Абсолютная аддитивная погрешность. Расчёт аддитивных и мультипликативных составляющих погрешностей результатов измерений

В теории ИП оказывается весьма важным разделение погрешности преобразователя на составляющие в зависимости от изменения их значений при изменении входной величины х по диапазону преобразования.

Если реальная функция преобразования/ (на рис. 2.2, а обозначена цифрой 1) смещена относительно номинальной (обозначена цифрой 2) так, что при всех значениях преобразуемой величины х выходная величина у оказывается больше (или меньше) на одну и ту же величину Д 0 , то такая погрешность называется аддитивной (в пер. с лат. - получаемая путем сложения) или погрешностью нуля. Если она является систематической, т.е. постоянной по величине и неизменной во времени, то она может быть скорректирована путем смещения шкалы или смещения нулевого положения указателя. Для выполнения этой операции во многих приборах предусматривается электрическое или механическое устройство установки нуля (так называемый корректор).

Рис. 2.2.

Если же аддитивная погрешность является случайной, то она не может быть скорректирована и реальная характеристика, смещаясь произвольным образом (оставаясь параллельной самой себе), образует полосу погрешностей, ширина которой остается постоянной для любых значений х (рис. 2.2, б).

Аддитивные погрешности возникают от постороннего груза на чашке весов при взвешивании, от неточной установки приборов на нуль перед измерением, от термоЭДС в цепях постоянного тока и т. п.

Изменения чувствительности S преобразователя (коэффициента усиления усилителя, коэффициента деления делителя, добавочного сопротивления вольтметра) ведут к тому, что абсолютная погрешность изменяется по диапазону преобразования и характеристика 1 преобразователя отклоняется от номинальной 2 (рис. 2.2, в). Если отклонения являются случайными, то они образуют полосу погрешностей (рис. 2.2, г).

Как видно из рисунка, возникающие вследствие этого абсолютные погрешности оказываются пропорциональными текущему значению преобразуемой величины х, поэтому такая погрешность называется мультипликативной (в пер. с лат. - получаемая путем умножения) или погрешностью чувствительности.

Таким образом, погрешность преобразователя мы представили в виде двух компонентов: аддитивной (погрешность нуля) и мультипликативной (погрешность чувствительности). Возвращаясь к рассмотренному примеру, можно утверждать, что Ау { = Д 0 = 10 мкВ есть погрешность нуля данного усилителя (поскольку имеет место при нулевом значении входного сигнала). При входном сигнале х 2 = = 20 мкВ погрешность складывается из погрешности нуля Д 0 = = 10 мкВ (еще раз подчеркиваем, что погрешность нуля постоянна во всем диапазоне изменения входной величины) и погрешности чувствительности Ay 2S , равной Ay 2S = Ау 2 - Д 0 = 200 - 10 = 190 мкВ.

Создается впечатление, что аддитивная составляющая погрешности, неизменная во всем диапазоне преобразования (в силу своей малости), несущественна по сравнению с мультипликативной составляющей, растущей вместе с входным сигналом. Поэтому аддитивной составляющей можно пренебречь, сосредоточившись на анализе и парировании мультипликативной погрешности.

Недопустимость подобного упрощения становится понятной, если рассмотреть относительные погрешности. Значения относительной аддитивной погрешности у(х) = Д 0 /х оказываются обратно пропорциональными х: при больших входных величинах х значения у(х) малы, но стремятся к бесконечности при приближении х к нулю. В этом заключается основное отрицательное свойство аддитивных погрешностей, не позволяющее использовать один и тот же преобразователь для преобразования как больших, так и малых физических величин.

Чтобы относительная величина погрешности ИП не возрастала по мере уменьшения х, абсолютная погрешность преобразователя должна быть чисто мультипликативной. Тогда характеристика преобразователя с учетом погрешности описывалась бы выражением у = S( 1 ± y s)x, где y s - относительная погрешность изменения чувствительности. Абсолютная ширина полосы неопределенности в этом случае была бы пропорциональна преобразуемой величине х как d = 2у 5 х, а относительная погрешность y s оставалась бы постоянной для любых малых значений х, ибо при х = 0 была бы равна нулю абсолютная погрешность преобразователя d.

Однако такой идеальный случай практически неосуществим, так как невозможно построить ИП, полностью лишенный аддитивных погрешностей. Эти погрешности в виде погрешностей от шума, дрейфа, трения, наводок неизбежны в любых типах измерительных преобразователей. Поэтому у реальных ИП полоса неопределенности характеристики выглядит так, как это показано на рис. 2.1.

Функция преобразования реального ИП с учетом аддитивной ±Д 0 , и мультипликативной ± у 5 составляющих погрешностей приобретает вид

Производя умножение в правой части выражения и пренебрегая произведением двух малых величин y s Д 0 , получим значение выходной величины в виде

Выражение (2.4) отображает важное принципиальное свойство измерительных преобразователей - наличие погрешностей приводит к тому, что одному значению входной физической величины х могут соответствовать различные значения выходной величины у. Это значит, что величина у отображает входную величину х не одним значением, а в интервале погрешностей (с учетом возможных знаков перед составляющими погрешности):

Дополнительная погрешность – возникает при отклонениях влияющих факторов от нормальных.

Три формы погрешности.

1. Абсолютная погрешность

2.Относительная погрешность

3. Приведенная погрешность

где Х n – диапазон измерений.

Метрологические характеристики средств измерения

1. Функция преобразования (градуировочная характеристика) – это зависимость между входной и выходной величинами. Выражается в виде графиков, формул и таблиц.

Функция преобразования бывает:

· линейная;

· нелинейная.

Под влиянием различных внешних факторов градуировочная характеристика может изменяться, при этом возникают аддитивные и мультипликативные погрешности.

Аддитивные – это погрешность 0, т.е это погрешность, которая остается постоянной на всем диапазоне измерения.


Мультипликативная - это погрешность крутизны характеристики, т.е погрешность, которая изменяется с увеличением диапазона измерения.



2. Вариация – это разность между двумя показаниями измерительного прибора, соответствующими данной точки диапазона измерений при двух направлениях медленных изменений измеряемой величины. Возникает вследствие трения в опорах и люфтах.

0 10 20 30 40 50 60 70

3. Класс точности – это обобщенная характеристика средств измерения, определяемая пределами, допускаемых основные и дополнительные погрешности, также другими свойствами средств измерения. Придел допускаемой погрешности средств измерения может устанавливаться в виде относительных, абсолютных или приведенной погрешности, в зависимости от характера ее измерения на всем диапазоне измерения.

Если средства измерения имеют аддитивную погрешность или она настолько велика, что мультипликативной можно принибречь, то в этом случае класс точности выражается через предел допустимой абсолютной погрешности.

Δ = + х; Δ = ± (а + вх);

В этом случае класс точности обозначается римскими цифрами или латинскими буквами. Однако указания только абсолютной погрешности позволяет сравнить между собой поточности средства измерения с разным диапазоном измерения, поэтому широкое распространение получило выражение класса точности через предел допускаемой приведенной погрешности.

= + Р; (1)

Шкалы бывают: равномерные и неравномерные.

Если шкала равномерная, то расчет ведется по формуле (1) в единицах измерения и класс точности записывается: 0,5…1,0.

Если шкала будет логарифмическая или гиперболическая, то расчет погрешности ведется в мм: .

Для средства измерения с преобладающей мультипликативной погрешностью, класс точности удобно выражать через придел допускаемой относительной погрешности, т.к. она остается постоянной на всем диапазоне измерения.

= + q;


Пример: …

Для средств измерения, в которых присутствуют как аддитивная, так и мультипликативная погрешности, класс точности выражается через придел допустимой относительной погрешности.

;

где Х – измеряемое значение в данной точке;

Хк – конечное значение шкалы;

С/d = 0,01/0,03;

С – определяется при max значениях приборов, С = + δ;

d - придел допускаемой абсолютной погрешности при 0 показании прибора выраженный в % от верхнего придела измерения,

d = + · 100%;

;

где - суммарная погрешность;

Основная погрешность;

Сумма дополнительных погрешностей;

i – влияющий фактор.

4. Чувствительность средств измерения – это изменение сигнала на выходе к вызвавшему его изменению входной величины:

;

5. Порог чувствительности - это входное воздействие вызывающее min ощутимое изменение выходной величины (измеряется в единицах входной величины).

6. Динамических характеристики средств измерения – это зависимость, определяющая изменения выходной величины как реакцию на известное изменение входной величины (выражается в виде графиков и формул).

Х вх Х вых

Средства измерений.

2. Измерительные преобразователи.

3. Измерительные приборы.

4. Измерительные системы.

5. Вспомогательные средства измерения.

1. Меры – это средства измерения, имеющие нормированные метрологические характеристики, воспроизводящие одну или несколько единиц измерения физической величины.

Меры бывают:

· однозначные (батарейка, конденсаты, гиря);

· многозначные (линейка, набор гирь, конденсатор переменной емкости).

2. Измерительные преобразователи (датчик) – это средство измерения, имеющие нормированные метрологические характеристики, предназначенные для преобразования одной физической величины в другую или в сигнал измерительной информации удобной для хранения, воспроизведения, передачи на расстояние, дальнейших преобразований, но не удобной для непосредственного восприятия наблюдателя.

К причинам возникновения аддитивных погрешностей СИ можно отнести:

Наличие неэлектрических влияющих факторов со стороны окружающей среды, действующих на элементы СИ, в том числе, влажности, давления воздуха, вибраций основания, на котором установлено СИ;

Наличие внешних электрических шумов и наводок;

Наличие внутренних тепловых (равновесных) и неравновесных шумов в проводящих элементах СИ;

Наличие контактной разности потенциалов и термоэлектрического тока;

Наличие сухого трения в подвижных элементах приборов;

Конструкция СИ;

Плохое заземление.

Внешние и внутренние электрические шумы и наводки, а также методы их подавления будут рассмотрены в дальнейшем. Сейчас остальные причины аддитивной погрешности СИ в виде примеров.


Конец работы -

Эта тема принадлежит разделу:

Классификация физических величин

Кафедра информационно измерительной техники и технологий.. и з джилавдари..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Размер физических величин. “Истинное значение” физических величин
В настоящее время в метрологии используются следующие понятия для характеристики размера (количественной характеристики) физической величины: - истинное значение; - действительное

Основной постулат и аксиома теории измерений
Как и любая другая наука, теория измерений должна строиться на основе постулатов или аксиом. Основным постулатом в теории измерений будем считать следующий постулат: измеряемая физическ

Теоретические модели материальных объектов, явлений и процессов
Реальные объекты и явления материального мира чрезвычайно сложны. Человеческое сознание не в состоянии охватить все свойства этих объектов и связи между ними, поэтому в процессе описания и изучения

Физические модели
Физика как наука о природе, изучающая простейшие, и вместе с тем, наиболее общие свойства материального мира, также базируется на теоретических моделях. Эти модели характеризуются определёнными пон

Математические модели
Построенные выше физические модели необходимо описать с помощью символов в виде математических формул и уравнений. Эти символы – параметры объектов (они же обозначают физические величины) – связаны

Погрешности теоретических моделей
Проблема достоверности наших представлений об окружающем мире, т.е. проблема соответствия модели объекта и реального объекта, является ключевой проблемой в теории познания. В настоящее время общепр

Измерение как физический процесс
Измерение любой физической величины – это эксперимент, который включает в себя

Методы измерений как методы сравнения с мерой
Это еще одна возможная классификация методов измерений – одна из самых важных, поскольку, по существу, процесс измерения, в конечном счете, сводится к сравнению измеряемой физической величины с мер

Метод прямого преобразования
В этом ме

Метод следящего уравновешивания
Отличительной о

Мостовой метод
Этот метод широко используется для измерения пассивных физических величин (объектов параметрического вида: сопротивление, индуктивность, ёмкость и т.д.), а также в системах регулирования. В этом ме

Разностный метод
Данный метод позволяет уменьшить сигнал на входе измерительного прибора и, тем самым, увеличить их точность за счет уменьшения мультипликативной погрешности. Это – один из наиболее точных методов.

Нулевые методы
Разностный метод называется нулевыми или компенсационным, в случае полной компенсации, т.е. если разность Δх=х-хоп=0. Достоинством нулевых методов являет

Метод развёртывающей компенсации
Основной недостаток метода следящего уравновешивания состоит в том, что при больших значениях величины сис

Измерительные преобразования физических величин
Измерительное преобразование – однозначное преобразование одной физической величины в другую физическую величину или сигнал, функционально с ней связанные, удобные для обработки, хранения и дальней

Статические характеристики и статические погрешности СИ
Основная статическая характеристика СИ – функция преобразования. Функция преобразования – функциональная з

Характеристики воздействия (влияния) окружающей среды и объектов на СИ
Воздействие (влияние) окружающей среды и объектов на СИ приводит и к дополнительным инструментальным (аддитивным, и к мультипликативным) погрешностям этого СИ. Обычно речь идет об отклонении значен

Полосы и интервалы неопределённости чувствительности СИ
Неопределенность чувствительности СИ это – неопределенность статической функции преобразования, обусловленная ее нестабильностью и проявляющая себя в виде случайных аддитивной и мультипликативной с

СИ с мультипликативной погрешностью
Эта погрешность связана со случайными изменениями наклона функции преобразования. В этом случае сигнал на выходе СИ имеет вид:

СИ с аддитивной и мультипликативной погрешностями
В этом случае выходной сигнал имеет вид: . Пусть, как и выше, относительная мультипликативная погрешность

Измерение больших величин
Что такое большие и малые измеряемые величины? Рассмотрим этот вопрос на примере измерения электрического сопротивления с помощью моста постоянного тока.

Формулы статических погрешностей средств измерений
Рассмотрим погрешность, определяемую формулой (13) предыдущего раздела: . (1) Эту формулу называю

Полный и рабочий диапазоны средств измерений
Полный диапазон СИ определяется интервалом измерения x, в котором относительная погрешность прибора

Динамические погрешности средств измерений
Все выше сказанное про погрешности СИ относилось к статическим погрешностям. Динамические погрешности СИ возникают при измерении величин, изменяющихся во времени. Различают два вида динамических по

Динамическая погрешность интегрирующего звена
Специфическим случаем динамической погрешности первого рода является погрешность усреднения, свойственная цифровым частотомерам, интегрирующим цифровым вольтметрам и другим приборам, дающим результ

Влияние сухого трения на подвижные элементы СИ
Пусть элемент представляет собой массу m, на которую действует упругая сила, сила трения, а также внешняя сила F. Тело движется с постоянной скоростью, сначала вправо, затем – влево.

Конструкция СИ
Ввиду большого разнообразия существующих конструкций СИ, рассмотрим данную причину аддитивной погрешности на простом примере – проволочного реостата.

Контактная разность потенциалов
В 1797г. Вольт установил, что если привести в электрический контакт металлы в следующей последовательности: Al, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd, то каждый предыдущий металл приобретё

Термоэлектрический ток
Если взять два металла 1 и 2 и привести их в контакт, а концы нагреть так, что Т1 не равна Т2 , то возникает ток, называемый термоэлектрическим током:

Помехи, возникающие из-за плохого заземления
Если объект измерения и измерительный преобразователь заземлены в различных точках (например, при использовании двух различных силовых розеток), то заземленные концы объединяются между собой по зем

Старение и нестабильность параметров СИ
“Старение ” элементов прибора сводиться к изменению их химических свойств и структуры, которые обусловлены химическими реакциями, протекающими под действием окружающей среды, наличием электрическог

Геометрическая нелинейность
Пример 1. Зависимость периода колебаний математического маятника от амплитуды колебаний по формуле

Физическая нелинейность
Пример 1. Прибор для измерения малых перемещений (дилатометр). Здесь перемещение одной пластины конденсатора относительно другой можно измерять, измеряя емкость конденсато

Токи утечки
Вследстви

Меры активной и пассивной защиты
Пассивная защита увеличивает сопротивление изоляции и включает: - создание пыленепроницаемой оболочки; - уменьшение влажности (обработка водоотталкивающим средств

Физика случайных процессов, определяющих минимальную погрешность измерений
Методические и инструментальные погрешности измерений, рассмотренные выше, могли быть любой величины. В последующих разделах будут рассмотрены факторы, определяющие минимально достижимую погрешност

Возможности органов зрения человека
Развитие техники измерений позволяет так построить процесс измерения и создать такие измерительные установки, что они все меньше ограничены возможностями человеческих органов чувств. Сегодня мы оче

Естественные пределы измерений
При измерении макроскопических величин максимальная точность ограничена статистическими флуктуациями возле среднего значения. Если эти флуктуации нельзя уменьшить при фиксированных внешних условиях

Соотношения неопределенности Гейзенберга
Существование принципа неопределенности обусловлено корпускулярно-волновой природой (дуализмом) материального мира, в котором состояние микросистем описывается волновой функцией, квадрат модуля кот

Естественная спектральная ширина линий излучения
Если применить соотношение неопределенностей между энергией и временем к спонтанному распаду в системах, находящихся в квазистационарных состояниях, т.е. в состояниях, которые существуют конечное в

Абсолютная граница точности измерения интенсивности и фазы электромагнитных сигналов
Применим соотношение к монохроматическим электромагнитным волнам. Для полного описания волны нужно измерит

Фотонный шум когерентного излучения
Дискретная природа электромагнитного излучения в виде фотонов приводит к флуктуациям потока фотонов. Рассмотрим идеальный детектор с квантовым выходом h=1 (например, фотоячейку, с катода которой ка

Эквивалентная шумовая температура излучения
Для описания шумов вводят так называемую эквивалентную шумовую температуру ТR излучения. При этой температуре мощность теплового шума в проводнике равна мощности квантового (фотон

Электрические помехи, флуктуации и шумы
Рассмотрим теперь электрические флуктуации, которые являются следствием дискретной природы электричества и хаотичности движения или случайности появления элементарных носителей электричества – элек

Дробовой шум
В электронной лампе акты вылета электронов с катода или попадания их на анод образуют последовательность независимых событий, происходящих в случайные моменты времени. Поэтому ток I(t

Шум генерации - рекомбинации
В почти беспримесном полупроводнике электроны и дырки появляются и исчезают случайным образом под влиянием процессов генерации и рекомбинации следующего вида: свободный электрон +

F-шум и его универсальность
Шум 1/f проявляет себя на низких частотах (как правило, ниже 10 кГц) в виде шума избыточного по сравнению с дробовым и с возрастающей по мере снижения частоты интенсивностью. Было обнаружено

Импульсный шум
Импульсный шум проявляет себя в p – n структурах и в неметаллических резисторах. Если этот шум усилить и подать на громкоговоритель, то звук будет похож на шум лопающихся при поджаривании ку

Математическая модель флуктуаций
Любые макроскопические системы, даже находящиеся в состояния равновесия, не являются каким-то “застывшим” образованием. Напротив, это состояние динамического равновесия. В них всегда происходят сло

Простейшая физическая модель равновесных флуктуаций
Всякую физическую систему всегда можно рассматривать как часть некой, пусть даже очень большой, замкнутой системы. Именно замкнутая система обладает одним замечательным свойством. Известно, что, вс

Основная формула расчета дисперсии флуктуации
Флуктуации – результат совместного действия огромного числа частиц образующих макросистему. В этом случае, в соответствии с предельной теоремой теории вероятностей, вероятность обнаружить значение

Влияние флуктуаций на порог чувствительности приборов
Флуктуации играют важную роль в действии современных высокочувствительных приборов – весов, гальванометров, микровольтметров и т. п. Чувствительность этих приборов столь высока, что они позволяют р

Скорость свободного тела
Будем рассматривать свободное твердое массой m как подсистему, находящуюся в тепловом контакте с окружающей средой, которую в таком случае называют тепловым резервуаром или термостатом. Окру

Колебания математического маятника
Найдем теперь средний угол случайных отклонений свободно висящего математического маятника. Работа, необхо

Повороты упруго подвешенного зеркальца
Одним из простейших и наиболее чувствительных приборов является легкое зеркальце, подвешенное на тонкой, о

Смещения пружинных весов
Совершенно аналогичные результаты могут быть получены для пружинных весов. Тепловое движение моле

Тепловые флуктуации в электрическом колебательном контуре
Вследствие хаотического (теплового) движения электронов в цепи контура в нем будут возникать флуктуации то

Корреляционная функция и спектральная плотность мощности шума
Корреляционная функция является детерминированной характеристикой случайного процесса (шума), которая связывает значение случайной величины (сигнала) x(t1) в данный

Флуктуационно-диссипационная теорема
Теория равновесных флуктуаций, представленная выше, нашла свое завершение в виде флуктуационно-диссипационной теоремы (ФДТ), сформулированной в 1951-1952 гг. Физическое содержание

Если диссипация энергии в системе отсутствует, в ней не может быть равновесия
Следовательно, статистическое равновесие предполагает наличие диссипации. Например, маятник, выведенный толчком из положения равновесия, может вернуться в исходное неподвижное состояние только при

Формулы Найквиста
Электроны, находясь в проводящей среде, испытывают со стороны этой среды беспорядочные толчки, как и броун

Спектральная плотность флуктуации напряжения и тока в колебательном контуре
Представим, что колебательный контур представляет систему, на входе которой действует источник шума (генер

Эквивалентная температура нетепловых шумов
В большинстве случаев пороговая чувствительность приборов и установок ограничивается не тепловым, а каким-либо другим источником шума (электронными шумами, механическими вибрациями). Например, при

Внешние электромагнитные шумы и помехи и методы их уменьшения
Существуют два основных способа уменьшения шумовых наводок: экранирование и заземление. Так как экранирование, как правило, сопровождается заземлением, они тесно связаны между собой. Так, например,

Особенности проводящего экрана без тока
Рассмотрим возможность экранирования проводника, помещенного в проводящий экран, от внешнего магнитного поля.

Особенности проводящего экрана с током
Определим величину магнитной связи между экраном в виде проводящей трубки и помещенным в нее проводником.

Магнитная связь между экрана с током и заключенным в него проводником
Вычислим напряжение, наводимое на центральный проводник вследствие прохождения по экрану тока Iэ и наличия индуктивной связи между экраном и проводником. Это напряжение будем рассматр

Использование проводящего экрана с током в качестве сигнального проводника
Лучший способ защиты сигнальной цепи от магнитных полей – уменьшение площади его контура. Площадь, представляющая интерес в этом плане, – это общая площадь, охваченная током, проходящим в сигнально

Защита пространства от излучения проводника с током
Чтобы предотвратить излучение во внешнее пространство, источник помех можно заключить в экран. Теоретически, как было показано выше, если сделать ток экрана равным по величине и направленным навстр

Анализ различных схем защиты сигнальной цепи путем экранирования
Было проведено сравнение экранирующих свойств в отношении магнитного поля для различных схем включения каб

Сравнение коаксиального кабеля и экранированной витой пары
Экранированная витая пара очень полезна на частотах до 100 кГц и в некоторых случаях до 10 МГц. На частотах выше 1 МГц потери в экранированной витой паре значительно возрастают.

Особенности экрана в виде оплетки
Большинство кабелей имеет экран в виде оплетки, а не сплошного проводника. Оплетка гибка, прочна на разрыв и допускает многократные перегибы. Однако оплетка перекрывает лишь 60 – 90% требуемой площ

Влияние неоднородности тока в экране
Проводимое выше рассмотрение магнитного экранирования основывалось на однородности распределения продольного тока в экране по его окружности. Сплошные экраны, например выполненные из алюминиевой фо

Избирательное экранирование
Примером устройства, где производится избирательное экранирование от электрического поля, а на магнитное поле не оказывается никакого воздействия, является антенна в виде экранированной петли. Така

Подавление шумов в сигнальной цепи методом ее симметрирования
Цель симметрирования состоит в том, чтобы сделать равными шумы, наводимые в обоих проводниках СИ. В этом с

Развязка по питанию
В большинстве электронных систем источник питания постоянного тока и система распределения питания являютс

Развязывающие фильтры
Для изоляции схемы от источника питания, исключения связи между схемами и отвода шумов источника питания от схемы можно использовать резистивно-емкостные и индуктивно-емкостные цепи развязки. Две т

Защита от излучения высокочастотных шумящих элементов и схем
Чтобы защититься от излучения «шумящих» высокочастотных схем, их помещают в металлические экраны. Чтобы эти экраны были эффективны, ко всем проводам, входящим в отсек или выходящим из него, следует

Шумы цифровых схем
Хотя все рассмотренные выше методы шумоподавления применимы как к аналоговым (линейным), так и к цифровым схемам, полезно посмотреть, как некоторые особенности цифровых схем влияют на их шумовые ха

Ближнее и дальнее электромагнитное поле
Характеристики электромагнитного поля определяются: - источником; - окружающей его средой; -

Эффективность экранирования
Ниже рассматривается эффективность экранирования тонких металлических листов в ближнем и дальнем полях. Эту эффективность определяют двумя способами. Один из этих способов базируется на соотношения

Полное характеристическое сопротивление и сопротивление экрана
Полное характеристическое сопротивление среды определяется следующим выражением: .(1). Для диэлектриков (s

Потери на поглощение
При прохождении электромагнитной волны в среде ее амплитуда уменьшается экспоненциально, как показано на рис.6. Это объясняется тем, что токи, индуцируемые в среде, вызывают омические потери и, сле

Потери на отражение
Потери на отражение на границе раздела двух сред связаны с различными значениями полных характеристических

Суммарные потери на поглощение и отражение для магнитного поля
Общие потери для магнитного поля получаются в соответствии с уравнением (3) как комбинация потерь на поглощение и на отражение. Если экран имеет значительную толщину (потери на поглощение >10дБ)

Влияние отверстий на эффективность экранирования
Предыдущие вычисления эффективности экранирования велись в предположении, что экран сплошной и не имеет стыков и отверстий. За исключением низкочастотных магнитных полей, очень легко получить эффек

Влияние щелей и отверстий
Величина утечки через разрывы в экране зависит главным образом от трех факторов: - максимального линейного размера (а не площади) отверстия; - волнового сопротивления; -

Использование волновода на частоте ниже частоты среза
Дополнительного ослабления поля можно достичь, если изменить форму отверстия так, чтобы получился волновод

Влияние круглых отверстий
Обычно для обеспечения вентиляции используется конфигурация, представленная на рис.14. Здесь показана част

Использование проводящих прокладок для уменьшения излучения в зазорах
Соединения, выполненные в виде непрерывного сварного или паяного шва, обеспечивают максимальное экранирование. Клепаные и винтовые соединения менее желательны. Если применяются винты, их следует ра

Шумовые характеристики контактов и их защита
В любом случае, когда контакты замыкают или размыкают цепь, в которой проходит ток, между ними может развиться пробой. Это возможно, когда контакты находятся в непосредственной близости друг к друг

Тлеющий разряд
Когда газ ионизируется под действием электрического поля между контактами, здесь может возникнуть самоподд

Дуговой разряд
Дуговой разряд может наблюдаться при напряжениях и расстояниях между контактами, намного меньших, чем те, которые требуются для тлеющего разряда. Он может возникать даже в вакууме, так как наличие

Сравнение цепей переменного и постоянного тока
Если мы хотим предохранить контакт от разрушения, то дугу, как только она возникнет, необходимо быстро прервать, чтобы свести к минимуму ущерб, наносимый ею контакту. Если разряд прервать недостато

Материал контактов
Ни один материал не может одинаково хорошо работать и при нулевых токах (обесточенная цепь), и при больших значениях тока. Палладий хорошо подходит для сильноточных цепей в условиях, вызывающих эро

Индуктивные нагрузки
Напряжение на индуктивности L определяется уравнением.Это выражение объясняет, почему при резком в

Принципы защиты контактов
На рис.7 в виде соотношений напряжение – расстояние представлены условия, необходимые для пробоя между контактами. Показана кривая напряжения, вызывающего возникновение тлеющего разряда, а также ми

Подавление переходных процессов при индуктивных нагрузках
Чтобы защитить контакты, переключающие индуктивные нагрузки и минимизировать излучаемые и наведенные помехи, необходимо параллельно индуктивности или (и) контактам включать цепи защиты. В не

Цепь с емкостью
На рис.16 показаны три вида цепей защиты, которые обычно ставятся на контакты, управляющие индуктивной наг

Цепь с емкостью и резистором
На рис.16,б показана схема, в которой недостатки схемы рис.16,а преодолены за счет ограничения разрядного тока конденсатора при замыкании контактов. Делается это путем включения после

Цепь с емкостью, резистором и диодом
На рис.16,в представлена более сложная схема защиты контактов, в которой преодолены недостатки схем на рис.16,а и б. Когда контакты разомкнуты, конденсатор С заряжен до

Защита контактов при резистивной нагрузке
В случае резистивных нагрузок и источников питания напряжением менее 300 В тлеющий разряд не возникает (и тем самым исключается из рассмотрения). Если напряжение питания превышает минимальное дугов

Рекомендации по выбору цепей защиты контактов
Для определения типа цепей защиты контактов при различных нагрузках можно воспользоваться следующими рекомендациями: 1. Для неиндуктивной нагрузки, потребляющей ток меньше дугового тока, з

Паспортные данные на контакты
Для контактов в паспорте обычно указываются максимально допустимые значения напряжения и тока при резистивной нагрузке. Когда контакты работают в режиме, предусмотренном паспортными данными, при за

Идеальный генератор тока и идеальный генератор напряжения
Рассмотрим простейшую электрическую цепь, содержащую источник э.д.с. Е, сопротивление нагрузки R

Согласование сопротивлений генераторных ИП
Есть два преобразователя: генераторный измерительный преобразователь ИП, который представлен своей ЭДС - Е(х), которая является функцией входной величины х, и СИ с входным сопр

Согласование сопротивлений параметрических преобразователей
Эквивалентная схема соединения параметрического ИП с последующим измерительным показана на рис. Здесь Е=const и принадлежит внешнему источнику питания (источнику возбуждения параметрического

Принципиальное различие информационных и энергетических цепей
При условии согласования преобразователей энергетический КПД генераторного преобразователя равен:

Использование согласующих трансформаторов
В случае

Метод отрицательной обратной связи
Рассмотрим измерительный преобразователь с мультипликативной погрешностью. Процесс преобразовани

Метод уменьшения ширины полосы пропускания
Данный метод является весьма эффективным для уменьшения влияния наводок и шумов, проникающих в измерительную цепь. Как было раньше показано, интегральной характеристикой шумов является их дисперсия

Эквивалентная полоса частот пропускания шумов
Существуют различные критерии оценки эквивалентной полосы пропускания Dfэкв шумов для элементов, характеристики которых зависят от частоты сигнала. В данном случае воспользуемся с

Метод усреднения (накопления) сигнала
Ширина полосы наблюдения сигнала (и, естественно, и шума) Df и время измерения T в самом общем виде связаны между собой соотношением неопределенности

Метод фильтрации сигнала и шума
Данный метод является простейшим средством сужения полосы пропускания. Будем различать следующие случаи: Частоты сигнала и шума не перекрываются (ωсигн≠ωшум

Проблемы создания оптимального фильтра
Проведение фильтрации сигнала вслепую связано с риском исказить форму сигнала. Поэтому желательно знать спектральную плотность сигнала S(w), чтобы использовать такой фильтр, параметры которо

Метод переноса спектра полезного сигнала
Рассмотрим этот метод на примере измерения светового потока нити накаливания электрической лампы (рис.) Если лампа подключена к источнику постоянного напряжения, она создает световой поток

Метод фазового детектирования
В этом методе периодический сигнал проходит через усилитель, знак коэффициента усиления которого изменяет

Метод синхронного детектирования
Функциональная блок-схема метода:

Погрешность интегрирования шумов с помощью RC - цепочки
При интегрировании (усреднении) сигналов х(t) обычно предполагают, что интегрирование является идеальным. Однако во многих случаях гораздо проще использовать не идеальный интегратор,

Метод модуляции коэффициента преобразования СИ
Функциональная блок-схема этого метода: Этот метод позволяет устранить аддитивную и мультипликат

Применение модуляции сигнала для увеличения его помехозащищенности
Чувствительность системы к помехам зависит не только от экранирования, заземления и т.п., но также и от используемой системы модуляции или кодирования сигнала. Таким системам модуляции, как амплиту

Метод дифференциального включения двух ИП
Он позволяет уменьшить погрешность нуля (аддитивную погрешность) и уменьшить мультипликативную погрешность, обусловленную нелинейностью функции преобразования. Предположим, что имеются два

Метод коррекции элементов СИ
метод коррекции рассмотрим на примерах. Пример 1.Пусть сопротивление резистора в измерительной цепи зависит от температуры t по закону r=r0

Методы уменьшения влияния окружающей среды и условий изменения
Пассивная защита от быстро изменяющихся влияющих величин путем: - фильтрации; - амортизации; - теплоизоляции и т.д. Активная защита от медленно изм

Организация измерений
Продуманная организация измерений, как определенная последовательность действий, позволяет обеспечить необходимую точность при минимальных затратах, т.е. сделать измерения оптимальными. Эту последо

Погрешность преобразователей является следствием несовершенства их конструкции и технологии изготов­ления. Поэтому она определяется совокупностью частных составляющих погрешности или, как принято говорить, совокуп­ностью частных погрешностей. Наличие погрешности у преобразователя (а она всегда есть) проявляется в том, что реальная характеристика преобразователя отличается от номинальной, является неоднозначной и из линии превращается в полосу неопределенности.

Частные погрешности можно классифицировать по различным признакам:

1) по характеру влияния на уравнение преобразователя;

2) по характеру проявления: систематические и случайные;

3) по причине возникновения;

4) по зависимости от скорости изменения измеряемой величины: статические и динамические.

По характеру влияния на уравнение преобразователя погрешности подразделяются на аддитивные и мультипликативные .

Аддитивная погрешность (от лат. additio - прибавление) проявляется в смещении нулевого или условно нулевого положения. Это смещение не зависит от значения измеряемой величины и объясняется наличием внешних помех, шумов, трения, порога чувствительности. К числу аддитивных можно отнести и погрешность дискретности (квантования), хотя это и не погрешность нуля. С учетом аддитивной погрешности уравнение (2.161) преобразователя принимает вид

Y= S н Х +∆ у .а. . (2.165)

где ∆ у - аддитивная погрешность, приведенная к выходу.

Аддитивная погрешность может иметь как систематический, так и случайный характер. На рис. 2.22,а показаны номинальная и реальная характеристики преобразователя для случая систематической аддитивной погрешности, а на рис. 2.22,б - полоса неопределенности, в которую превращается номинальная характеристика преобразователя, если аддитивная погрешность носит случайный характер.

Рис. 2.22. Характеристики преобразователем при наличии аддитивной

погрешности систематического (а ) и случайного (б) характеров.

Систематическая составляющая аддитивной погрешности должна быть скорректирована перед началом измерения, а случайная может быть учтена по законам случай­ных ошибок. Перечисленные выше аддитивные погрешности являются случайными с отличным от нуля математическим ожиданием.



Мультипликативная погрешность - это погреш­ность чувствительности (от англ. multiplier - множитель, коэф­фициент), т. е. это погрешность, вызванная непостоянством чув­ствительности в диапазоне измерения вследствие несовершен­ства технологии изготовления преобразователя, а также вслед­ствие воздействия внешних факторов.

Если непостоянство чувствительности по шкале обозначить через ∆S , то относительное изменение ее (по отношению к номи­нальному значению чувствительности S Н, ее математическому ожиданию) и является относительной мультипликативной погрешностью. Действительно,

где т у = Y 0 - математическое ожидание Y , его действительное значение; ∆ у ,м - абсолютная погрешность преобразования.

т. е. равна относительному изменению чувствительности. Из (2.166) следует, что абсолютная мультипликативная погреш­ность пропорциональна измеряемой величине:

Здесь и ранее - это погрешности преобразователя, приведенные к выходу. Погрешности, приведенные к входу, в S Н раз меньше.

Рис. 2.23. Мультипликативные систематические погрешности (а )

и характеристики преобразователей (б ).



Мультипликативная погрешность также может иметь систематическую и случайную составляющие. На рис. 2.23, а изображены кривые абсолютной и относительной систематической мультипликативной погрешностей для γ m 1 =const, а на рис. 2.23,б номинальная и реальная характеристики преобразователя для γ m 1 . Если непостоянство чувствительности по шкале носит случайный характер, как это показано на рис. 2.24, а, и характеризуется среднеквадратичным отклонением ±σ м, то

у ,м =±z σ м Y 0 . (2.169)

Рис. 2.24. Чувствительность (а ) и характеристика преобразователя (б) при случайной мультипликативной погрешности.

На рис. 2.24,б изображена номинальная характеристика пре­образователя и зона неопределенности, определяющая положе­ние (случайное) реальной характеристики.

Полная абсолютная погрешность преобразователя, приведен­ная к выходу,

у =∆ у, a +γ м Y 0 . (2.170)

а приведенная к входу

x =∆ x , a +γ м X. (2.171)

Относительная погрешность преобразователя

В дальнейшем индексы у и х у погрешностей будем опускать.

Из (2.172) видно, что при малых значениях измеряемой вели­чины относительная аддитивная составляющая погрешности может принимать очень большие значения. На рис. 2.25 изобра­жены номинальная характеристика и полоса неопределенности, определяющая реальную характеристику, при наличии у преоб­разователя обеих составляющих погрешности.

Рис. 2.25. Номинальная характе­ристика и полоса неопределенности реальной характеристики преобра­зователя при наличии аддитивной и

мультипликативной погреш­ностей.

Погрешность, вызванная нелинейностью, возникает в том случае, когда за характеристику преобразователя, имеющего принципиально нелинейную характеристику, принимается линейная. В зависимости от способа линеаризации эта погрешность может иметь только мультипликативную или только аддитивную составляющие. Действительно, при линеаризации по касательной (рис. 2. 26, а ) и по хорде (рис. 2.26,б ) ошибка должна расцениваться как мультипликативная, имеющая систематический характер. При линеаризации, на­пример, по методу Чебышева погрешность является аддитив­ной (рис. 2.26, в).

Рис. 2.26. Влияние способа аппроксимации нелинейной характеристики на характер и величину погрешности.

(Пояснения в тексте).

В этом случае она характеризуется зоной, определяемой положениями касатель­ной и хорды, поэтому удобнее и правильнее считать частную погрешность от нелинейности при таком способе линеаризации слу­чайной величиной.

Для многих преобразователей характерно явление гистерезиса, вызывающее вариацию значений выходного параметра. Это - упругий гистерезис мембран, магнитный гистерезис ферромагнитных материалов и т. д. Замена реальной гистерезисной характеристики идеальной приводит к случайной мультипликативной ошибке.

Разделение погрешностей на мультипликативные и аддитивные очень существенно при решении вопроса о нормировании погрешностей измерительных устройств, о выборе метода оптимальной обработки получаемой информации о значении измеряемой величины.