Что такое адронный коллайдер? Зачем вообще нужен Большой адронный коллайдер.

Пожалуй, всему миру известно грандиознейшее научное сооружение Европы – Большой адронный коллайдер, который выстроен неподалёку от швейцарского города Женева.

Перед его запуском было немало панических слухов о грядущем конце света и о том, что установка нанесёт непоправимый вред экологии Швейцарии. Однако годы идут, коллайдер работает, а мир остаётся прежним. Для чего же построили столь огромную и дорогостоящую конструкцию? Давайте разберёмся.

Что такое Большой адронный коллайдер?

В конструкции Большого адронного коллайдера, или БАК, нет ничего мистического. Это всего лишь ускоритель заряженных элементарных частиц, который необходим для разгона тяжёлых частиц и изучения продуктов, образующихся при их столкновении с другими частицами.

Во всём мире существует больше десятка аналогичных установок, в их числе – российские ускорители в подмосковной Дубне и в Новосибирске. БАК был впервые запущен в 2008 году, но из-за случившейся вскоре аварии долгое время работал на невысокой энергетической мощности, и лишь с 2015 года стала возможной эксплуатация установки на расчётных мощностях.

Как и практически все подобные установки, БАК представляет собой тоннель, проложенный в виде кольца. Он находится на глубине примерно 100 метров на границе между Францией и Швейцарией. Строго говоря, в систему БАК входит две установки, одна меньшего, другая большего диаметра. Длина большого тоннеля превосходит размеры всех прочих существующих сегодня ускорителей и составляет 25,5 километров, из-за чего коллайдер получил название Большого.

Для чего построен коллайдер?

Современным физикам удалось разработать теоретическую модель , объединяющую три фундаментальных взаимодействия из четырёх существующих и названную Стандартной моделью (СМ). Однако она пока не может считаться всеобъемлющей теорией строения мира, поскольку практически неисследованной остаётся область, названная учёными теорией квантовой гравитации и описывающая гравитационное взаимодействие. Ведущую роль в нём, согласно теории, должен играть механизм образования массы частиц, названный бозоном Хиггса.


Учёные всего мира надеются, что исследования, проводимые на БАК, позволят изучить свойства бозона Хиггса экспериментальным путём. Кроме того, немалый интерес представляет изучение кварков – так называются элементарные частицы, образующие адроны (из-за них коллайдер назван адронным).

Как функционирует БАК?

Как уже сказано, БАК представляет собой круглый тоннель, состоящий из основного и вспомогательного колец. Стенки тоннеля сложены из множества мощнейших электромагнитов, которые генерируют поле, ускоряющее микрочастицы. Начальный разгон происходит во вспомогательном тоннеле, но необходимую скорость частицы набирают в основном кольце, после чего несущиеся навстречу частицы сталкиваются, а результат их столкновения фиксируют высокочувствительные приборы.

В результате многочисленных экспериментов в июле 2012 года руководство ЦЕРН (Европейского совета ядерных исследований) объявило о том, что эксперименты позволили обнаружить бозон Хиггса. В настоящее время продолжается изучение этого явления, так как многие его свойства отличаются от предсказанных в теории.

Для чего людям нужен БАК?

Затраты на строительство БАК составили, по разным сведениям, свыше 6 млрд долларов США. Сумма становится намного более внушительной, если вспомнить ежегодные расходы на эксплуатацию установки. Для чего нужно нести столь существенные расходы, какую пользу принесёт коллайдер обычным людям?

Исследования, запланированные и уже происходящие на БАК, в перспективе могут открыть людям доступ к дешёвой энергии, которую можно будет получать буквально из воздуха. Это будет, возможно, наиболее грандиозная научно-техническая революция в истории человечества. Кроме того, разобравшись в механизме бозона Хиггса, люди, возможно, получат власть над силой, которая пока остаётся полностью неподконтрольной людям – над гравитацией.


Безусловно, открытия, которые будут сделаны при помощи Большого адронного коллайдера, не позволят нам прямо завтра овладеть технологией преобразования вещества в энергию или создать антигравитационный летательный аппаратпрактические результаты ожидаются лишь в отдалённом будущем. Однако эксперименты позволят сделать ещё несколько небольших шагов к пониманию сути строения Вселенной.

Сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) - ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более чем 100 стран.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; коллайдером (англ. collider - сталкиватель) - из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Технические характеристики BAK

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см 2 ·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см 2 ·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (англ.) (KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (-271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL, предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Ускорение частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц.

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света.

Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду

Цели и задачи БАК

Главная задача Большого адронного коллайдера - выяснить устройство нашего мира на расстояниях меньше 10 –19 м, "прощупав" его частицами с энергией несколько ТэВ. К настоящему времени уже накопилось много косвенных свидетельств того, что на этом масштабе физикам должен открыться некий «новый пласт реальности», изучение которого даст ответы на многие вопросы фундаментальной физики. Каким именно окажется этот пласт реальности - заранее не известно. Теоретики, конечно, предложили уже сотни разнообразных явлений, которые могли бы наблюдаться на энергиях столкновений в несколько ТэВ, но именно эксперимент покажет, что на самом деле реализуется в природе.

Поиск Новой физики Стандартную модель не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория. Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц. БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» - например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий. Изучение топ-кварков Топ-кварк - самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c 2 . Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе - Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК - ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков. Изучение механизма электрослабой симметрии Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса - частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе. Сам бозон нестабилен и имеет большую массу (более 120 ГэВ/c 2). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия. Изучение кварк-глюонной плазмы Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики. Поиск суперсимметрии Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» - теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу». Изучение фотон-адронных и фотон-фотонных столкновений Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики. Также рассматривается особый класс реакций - непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение. Проверка экзотических теорий Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений. Другое Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

Определение большого адронного коллайдера звучит так: БАК является ускорителем заряженных частиц, и создан он с целью разгона тяжелых ионов и протонов свинца, и исследования тех процессов, которые происходят при их столкновении. Но зачем это нужно? Таит ли в себе это какую-то опасность? В этой статье мы и будем отвечать на эти вопросы, и попробуем понять, зачем нужен большой адронный коллайдер.

Что собой представляет БАК

Большой адронный коллайдер – это огромнейший тоннель кольцеобразной формы. Он похож на большую трубу, которая разгоняет частицы. Находится БАК под территорией Швейцарии и Франции, на глубине 100 метров. Ученые всего мира принимали участие в его создании.

Цель его постройки:

  • Найти бозон Хиггса. Это механизм, который наделяет частицы массой.
  • Изучение кварков – это фундаментальные частицы, которые входят в состав адронов. Поэтому и название коллайдера «адронный».

Многие думают, что БАК является единственным ускорителем в мире. Но это далеко не так. Начиная с 50-х годов 20 века в мире построен не один десяток подобных коллайдеров. Но большой адронный коллайдер считается самым масштабным сооружением, длина его составляет 25,5 км. Кроме этого, в него входит еще один ускоритель, меньший по размеру.

СМИ о БАК

В СМИ, еще с начала создания коллайдера, появилось огромное количество статей об опасности и дороговизне ускорителя. Основная масса людей считает, что деньги потрачены зря, они не могут понять, зачем тратить столько средств и сил на поиски какой-то частицы.

  • Большой адронный коллайдер не является самым дорогим научным проектом в истории.
  • Основная цель этой работы - бозон Хиггса, для открытия которого и созданадронный коллайдер. Результаты этого открытия принесут человечеству множество революционных технологий. Ведь изобретение сотового телефона тоже когда-то было встречено негативно.

Принцип работы БАК

Рассмотрим, как выглядит работа адронного коллайдера. Он на больших скоростях сталкивает пучки частиц, а затем следит за их последующим взаимодействием и поведением. Как правило, на вспомогательном кольце сначала разгоняется один пучок частиц, а уже после этого он отправляется в кольцо основное.

Внутри коллайдера частицы удерживают множество сильнейших магнитов. Так как столкновение частиц происходит за доли секунды, то их перемещение фиксируют высокоточные приборы.

Организацией, которая осуществляет работу коллайдера, является ЦЕРН. Именно она, 4 июля 2012 года, после огромных денежных вложений и трудов, официально объявила о том, что бозон Хиггса таки найден.

Зачем БАК нужен

Теперь необходимо понять, что же дает БАК обычным людям, зачем адронный коллайдер нужен.

Открытия, связанные с бозоном Хиггса и изучение кварков, могут привести в перспективе к новой волне научно-технического прогресса.

  • Грубо говоря, масса является энергией в состоянии покоя, а значит, в будущем есть возможность преобразовать материю в энергию. И, следовательно, не будет проблем с энергией и появится возможность межзвездных путешествий.
  • В будущем изучение квантовой гравитации позволит управлять гравитацией.
  • Это дает возможность подробнее изучить М-теорию, которая утверждает, что в мироздание входит 11 измерений. Это изучение позволит глубже понять строение Вселенной.

О надуманной опасности адронного коллайдера

Как правило, люди боятся всего нового. Опасения у них вызывает и адронный коллайдер. Опасность же его надумана и разжигается в СМИ людьми, не имеющими естественно-научного образования.

  • В БАК сталкиваются адроны, а не бозоны, как пишут некоторые журналисты, пугая людей.
  • Подобные приборы работают уже много десятилетий и приносят не вред, а пользу науке.
  • Предположение о столкновении протонов с высокими энергиями, в результате которых могут возникнуть черные дыры, опровергается квантовой теорией гравитации.
  • В черную дыру может коллапсировать только звезда в 3 раза тяжелее солнца. Так как в солнечной системе таких масс нет, то и черной дыре неоткуда возникнуть.
  • Из-за той глубины, на которой находится коллайдер под землей, его излучение не представляет опасности.

Мы узнали, что такое БАК и для чего нужен адронный коллайдер и поняли, что опасаться его не стоит, а лучше ждать открытий, которые сулят нам большой технический прогресс.

В 100 метрах под землей, на границе Франции и Швейцарии, расположено устройство, которое способно приоткрыть тайны мироздания. Или, по мнению некоторых, уничтожить всю жизнь на Земле.

Так или иначе, это самая большая машина в мире, и она используется для исследования мельчайших частиц во Вселенной. Это Большой адронный (не андроидный) коллайдер (LHC).

Краткое описание

LHC является частью проекта, который возглавляет Европейская организация ядерных исследований (ЦЕРН). Коллайдер включен в комплекс ускорителей ЦЕРН за пределами Женевы в Швейцарии и используется для разгона пучков протонов и ионов до скорости, приближающейся к скорости света, столкновения частиц друг с другом и записи результирующих событий. Ученые надеются, что это поможет больше узнать о возникновении Вселенной и о ее составе.

Что такое коллайдер (LHC)? Это самый амбициозный и мощный ускоритель частиц, построенный на сегодняшний день. Тысячи ученых из сотен стран сотрудничают и конкурируют друг с другом в поиске новых открытий. Для сбора данных экспериментов предусмотрены 6 участков, расположенные вдоль окружности коллайдера.

Сделанные с его помощью открытия могут стать полезными в будущем, но это не причина его постройки. Цель Большого адронного коллайдера - расширить наши знания о Вселенной. Учитывая, что LHC стоит миллиарды долларов и требует сотрудничества многих стран, отсутствие практического применения может быть неожиданным.

Для чего нужен Адронный коллайдер?

В попытке понять нашу Вселенную, ее функционирование и фактическую структуру, ученые предложили теорию, называемую стандартной моделью. В ней предпринята попытка определить и объяснить фундаментальные частицы, которые делают мир таким, каким он есть. Модель объединяет элементы теории относительности Эйнштейна с квантовой теорией. В ней также учтены 3 из 4 основных сил Вселенной: сильные и слабые ядерные взаимодействия и электромагнетизм. Теория не касается 4-й фундаментальной силы - силы тяжести.

Стандартная модель дала несколько предсказаний о Вселенной, которые согласуются с различными экспериментами. Но есть и другие ее аспекты, которые требовали подтверждения. Один из них - теоретическая частица, называемая бозоном Хиггса.

Его открытие дает ответ на вопросы о массе. Почему материя ею обладает? Ученые идентифицировали частицы, у которых нет массы, например, нейтрино. Почему у одних она есть, а у других - нет? Физики предложили много объяснений.

Самое простое из них - механизм Хиггса. Эта теория гласит, что существует частица и соответствующая ей сила, которая объясняет наличие массы. Ранее она никогда не наблюдалась, поэтому события, создаваемые LHC, должны были либо доказать существование бозона Хиггса, либо дать новую информацию.

Еще один вопрос, которым задаются ученые, связан с зарождением Вселенной. Тогда материя и энергия были одним целым. После их разделения частицы вещества и антиматерии уничтожили друг друга. Если бы количество их было равным, то ничего бы не осталось.

Но, к счастью для нас, во Вселенной материи было больше. Ученые надеются наблюдать антивещество во время работы LHC. Это могло бы помочь понять причину разницы в количестве материи и антиматерии, когда началась Вселенная.

Темная материя

Современное понимание Вселенной предполагает, что пока можно наблюдать лишь около 4% материи, которая должна существовать. Движение галактик и других небесных тел говорит о том, что существует гораздо больше видимого вещества.

Ученые назвали эту неопределенную материю темной. Наблюдаемая и темная материя составляют около 25%. Другие 3/4 исходят от гипотетической темной энергии, которая способствует расширению Вселенной.

Ученые надеются, что их эксперименты либо предоставят дополнительные доказательства существования темной материи и темной энергии, либо подтвердят альтернативную теорию.

Но это лишь верхушка айсберга физики элементарных частиц. Есть еще более экзотические и противоречивые вещи, которые необходимо выявить, для чего и нужен коллайдер.

Большой взрыв в микромасштабах

Сталкивая протоны с достаточно большой скоростью, LHC разбивает их на более мелкие атомные субчастицы. Они очень нестабильны, и до распада или рекомбинации существуют только долю секунды.

Согласно теории Большого взрыва, первоначально из них состояла все материя. По мере расширения и охлаждения Вселенной они объединились в более крупные частицы, такие как протоны и нейтроны.

Необычные теории

Если теоретические частицы, антиматерия и темная энергия, не являются достаточно экзотичными, некоторые ученые считают, что LHC может предоставить доказательства существования других измерений. Принято считать, что мир является четырехмерным (трехмерное пространство и время). Но физики предполагают, что могут существовать и другие измерения, которые люди не могут воспринимать. Например, одна версия теории струн требует наличия не менее 11 измерений.

Адепты этой теории надеются, что LHC предоставит доказательства предлагаемой ими модели Вселенной. По их мнению, фундаментальными строительными кирпичиками являются не частицы, а струны. Они могут быть открытыми или закрытыми, и вибрировать подобно гитарным. Различие в колебаниях делает струны разными. Одни проявляют себя в виде электронов, а другие реализуются как нейтрино.

Что такое коллайдер в цифрах?

LHC представляет собой массивную и мощную конструкцию. Он состоит из 8 секторов, каждый из которых является дугой, ограниченной на каждом конце секцией, называемой «вставкой». Длина окружности коллайдера равна 27 км.

Трубки ускорителя и камеры столкновений находятся на глубине 100 метров под землей. Доступ к ним обеспечивает сервисный туннель с лифтами и лестницами, расположенными в нескольких точках вдоль окружности LHC. ЦЕРН также построил наземные здания, в которых исследователи могут собирать и анализировать данные, генерируемые детекторами коллайдера.

Для управления пучками протонов, движущихся со скоростью равной 99,99% скорости света, используются магниты. Они огромны, весят несколько тонн. В LHC имеется около 9 600 магнитов. Они охлаждаются до 1,9К (-271,25 °C). Это ниже температуры космического пространства.

Протоны внутри коллайдера проходят по трубам со сверхвысоким вакуумом. Это необходимо, чтобы не было частиц, с которыми они могли бы столкнуться до достижения цели. Единственная молекула газа может привести к неудаче эксперимента.

На окружности большого коллайдера есть 6 участков, где инженеры смогут проводить свои эксперименты. Их можно сравнить с микроскопами с цифровой камерой. Некоторые из этих детекторов огромны - ATLAS представляет собой устройство длиной 45 м, высотой 25 м и весом 7 т.

В LHC задействовано около 150 млн датчиков, которые собирают данные и отправляют их в вычислительную сеть. Согласно ЦЕРН объем информации, получаемой во время экспериментов, составляет около 700 МБ/с.

Очевидно, что такому коллайдеру требуется много энергии. Его годовая потребляемая мощность составляет около 800 ГВт∙ч. Она могла быть намного больше, но объект не работает в зимние месяцы. По данным ЦЕРН стоимость энергии составляет порядка 19 млн евро.

Столкновение протонов

Принцип, лежащий в основе физики коллайдера, довольно прост. Сперва производится запуск двух пучков: одного - по часовой стрелке, а второго - против. Оба потока ускоряются до скорости света. Затем их направляют навстречу друг к другу и наблюдают результат.

Оборудование, необходимое для достижения этой цели, намного сложнее. LHC является частью комплекса ЦЕРН. Прежде, чем какие-либо частицы войдут в LHC, они уже проходят ряд шагов.

Во-первых, для получения протонов ученые должны лишить атомы водорода электронов. Затем частицы направляются в установку LINAC 2, которая запускает их в ускоритель PS Booster. Эти машины для ускорения частиц используют переменное электрическое поле. Удерживать пучки помогают поля, создаваемые гигантскими магнитами.

Когда луч достигает нужного энергетического уровня, PS Booster направляет его в суперсинхротрон SPS. Поток ускоряется еще больше и делится на 2808 пучков по 1,1 x 1011 протонов. SPS вводит лучи в LHC по часовой и против часовой стрелки.

Внутри Большого адронного коллайдера протоны продолжают ускоряться в течение 20 минут. На максимальной скорости они совершают 11245 оборотов вокруг LHC каждую секунду. Лучи сходятся на одном из 6 детекторов. При этом происходит 600 млн столкновений в секунду.

Когда сталкиваются 2 протона, они расщепляются на более мелкие частицы, в том числе кварки и глюоны. Кварки очень неустойчивы и распадаются за долю секунды. Детекторы собирают информацию, отслеживая путь субатомных частиц, и направляют ее в вычислительную сеть.

Не все протоны сталкиваются. Остальные продолжают движение до секции сброса луча, где поглощаются графитом.

Детекторы

Вдоль окружности коллайдера расположены 6 секций, в которых производится сбор данных и проводятся эксперименты. Из них 4 детектора основные и 2 меньшего размера.

Самым крупным является ATLAS. Его размеры - 46 х 25 х 25 м. Трекер обнаруживает и анализирует импульс частиц, проходящих через ATLAS. Его окружает калориметр, измеряющий энергию частиц, поглощая их. Ученые могут наблюдать траекторию их движения и экстраполировать информацию о них.

Детектор ATLAS также имеет мюонный спектрометр. Мюоны - это отрицательно заряженные частицы в 200 раз тяжелее электронов. Они единственные способны проходить через калориметр без остановки. Спектрометр измеряет импульс каждого мюона датчиками заряженных частиц. Эти сенсоры могут обнаруживать флуктуации в магнитном поле ATLAS.

Компактный мюонный соленоид (CMS) является детектором общего назначения, который обнаруживает и измеряет субчастицы, высвобождаемые во время столкновений. Прибор находится внутри гигантского соленоидного магнита, который может создать магнитное поле, почти в 100 тысяч раз превышающее магнитное поле Земли.

Детектор ALICE разработан для изучения столкновений ионов железа. Таким образом исследователи надеются воссоздать условия, подобные тем, которые произошли сразу после Большого взрыва. Они ожидают увидеть, как ионы превращаются в смесь кварков и глюонов. Основным компонентом ALICE является камера TPC, служащая для изучения и воссоздания траектории частиц.

LHC служит для поиска доказательств существования антивещества. Он делает это путем поиска частицы, называемой прелестным кварком. Ряд субдетекторов, окружающих точку столкновения, имеет 20 метров в длину. Они могут улавливать очень неустойчивые и быстро распадающиеся частицы прелестных кварков.

Эксперимент ТОТЕМ проводится на участке с одним из малых детекторов. Он измеряет размер протонов и яркость LHC, указывающей на точность создания столкновений.

Эксперимент LHC имитирует космические лучи в контролируемой среде. Его целью является помощь в разработке широкомасштабных исследований реальных космических лучей.

На каждом участке детектирования работает команда исследователей, насчитывающая от нескольких десятков до более тысячи ученых.

Обработка данных

Неудивительно, что такой коллайдер генерирует огромный поток данных. 15 000 000 ГБ, ежегодно получаемых детекторами LHC, ставят перед исследователями огромную задачу. Ее решением является вычислительная сеть, состоящая из компьютеров, каждый из которых способен самостоятельно анализировать фрагмент данных. Как только компьютер завершит анализ, он отправляет результаты на центральный компьютер и получает новую порцию.

Ученые из ЦЕРН решили сосредоточиться на использовании относительно недорогого оборудования для выполнения своих расчетов. Вместо приобретения передовых серверов и процессоров используется имеющееся оборудование, которое может хорошо работать в сети. При помощи специального ПО сеть компьютеров сможет хранить и анализировать данные каждого эксперимента.

Опасность для планеты?

Некоторые опасаются, что такой мощный коллайдер может представлять угрозу для жизни на Земле, в том числе участвовать в формировании черных дыр, «странной материи», магнитных монополий, радиации и т.д.

Ученые последовательно опровергают такие утверждения. Образование черной дыры невозможно, поскольку между протонами и звездами есть большая разница. «Странная материя» уже давно бы могла образоваться под действием космических лучей, и опасность этих гипотетических образований сильно преувеличена.

Коллайдер чрезвычайно безопасен: он отделен от поверхности 100-метровым слоем грунта, а персоналу запрещено находиться под землей во время проведения экспериментов.

БАК – это, прежде всего, большая страшилка. Но так ли опасна она и следует ли её бояться? И да, и нет! Во-первых, всё и даже больше, о чём собираются узнать физики и астрофизики уже заранее известно (см. ниже). А то, что представляет собой настоящую угрозу, из области их предположений, оказывается совсем иной угрозой. Я, почему так уверено говорю об этом, да только потому, что мной сделано 60 научных открытий свойств эфира Вселенной и поэтому об эфире известно всё, но пока мне одному. Во-первых, наука в корне ошибается в отношении «чёрных дыр». «Чёрные дыры» – это ядра всех галактик. Они огромные и их нельзя создать в миниатюре искусственно никоим образом. И вот почему? Любая галактика представляет собой гигантский естественный осциллятор, который циклически расширяется и сокращается с периодом в десятки миллиардов лет. В конце сокращения большинство галактик приобретают форму шара (ядро). Вся Вселенная, в том числе и все галактики, состоят главным образом из эфира. Эфир представляет собой идеальную неразрывную сжимаемую жидкость, сжатую до колоссального давления, имеет огромную плотность и, самое важное, его вязкость оказывается равной нулю. Ядро и есть «чёрная дыра», но в отличие от общепринятого представления о нём в нём нет, и не может быть, никакой материи в любом её виде – один лишь эфир. За сокращением галактики сразу же следует её расширение. В частности, из шарообразной формы дополнительно начинается образовываться дискообразная форма. В результате расширения в ней эфира его статическое давление внутри уменьшается. Через миллионы лет наступает первое критическое давление, при котором из эфира подобно капелькам росы появляются самые различные субэлементарные частицы, в том числе фотоны, жёсткое излучение – рентгеновские лучи, «частицы Бога» и прочие. Галактика становится видимой, светящейся. Если она обращена к нам боком, то в центре вокруг оси наблюдается чёрная точка или чёрное пятно – эфир в котором материя не образуется. Она образуется на больших диаметрах. Существует зона или видимый пояс, в котором образуется материя. Далее по мере расширения дискообразной части происходит усложнение материи. Субэлементарные частицы оказываются сдавленными со всех сторон эфиром. Сам эфир между частицами образует параболоиды вращения со статическим давлением меньшим, чем в окружающем их эфире. Наименьшие поперечные сечение параболоидов на средине расстояния между центрами масс этих частиц и определяют силы сдавливания частиц от не скомпенсированного давления на них с противоположных сторон. Под действием сил сдавливания частицы приходят в движение. Частиц великое множество, поэтому результирующие силы от сдавливающих сил оказываются долгое время равными нулю. За сотни миллионов лет это равновесие постепенно нарушается. Некоторые из них слипаются, затормаживая своё движение, другие не успевают пройти мимо и под действием сил сдавливания начинают вращаться вокруг слипшихся более массивных частиц, образую атомы. Затем через миллиарды лет таким же образом образуются молекулы. Материя постепенно усложняется: образуются газовые звёзды, затем звёзды с планетами. На планетах под действием всё тех же сил сдавливания материя становиться более сложной. Образуются: газообразные, жидкие и твёрдые вещества. Затем на отдельных из них появляется растительный и животный мир и, наконец, живые существа наделённые разумом – люди и инопланетяне. Таким образом, в удалённых зонах галактики по мере расширения дискообразной части, материя становится тем сложнее, чем дальше она находится от центра ядра. В самом же ядре статическое давление, по-видимому, всегда оказывается выше критического, поэтому в нём образование материи оказывается невозможным. Гравитация как таковая не существует вовсе. Во Вселенной и, в частности, в галактиках действует закон всемирного сдавливания (выдавливания). Ядро галактики является «чёрной дырой», но она не обладают силами затягивающими материю. Свет, попавший в такую дыру, свободно проникает сквозь неё вопреки заявлениям о том, что это якобы невозможно. Поскольку эфир Вселенной представляет собой неделимую сжимаемую жидкость, то он не обладает температурой. Температуру имеет лишь материя, поскольку она дискретна (состоит из частиц). Поэтому нашумевший Большой взрыв и Теория тепловой вселенной оказываются ошибочными. Поскольку во Вселенной действует Закон всемирного сдавливания (выдавливания), то отсутствует ни чем не объяснимая гравитация как таковая, принимаемая учёными просто – на веру. Поэтому не состоятельной оказывается ОТО – общая теория относительности А. Эйнштейна и все теории основанные на различного рода полей и зарядов. Никаких полей и зарядов попросту нет. Находит простое и понятное объяснение четыре великих взаимодействия. Кроме того притяжение объясняется сдавливанием, а отталкивание – выдавливанием. Относительно зарядов: разноимённые заряды притягиваются (явление – сдавливание), а одноименные отталкиваются (явление – выталкивание). Поэтому ещё целый ряд теорий также становятся не состоятельными. Однако падать в обморок от страха из-за образования «чёрных дыр» в БАК – Большом андронном коллайдере не следует. Ему её никогда не создать, как бы не пыжился его персонал, и какие бы клятвенные заверения не давал. Создавать «частицы Бога» (бозон Гиггса), по-видимому,_ невозможно и не целесообразно. Эти частицы сами в готовом виде прилетают к нам из первой зоны нашей галактики «Млечный путь», а бояться их – тем паче не следует. Бозон атакует Землю уже миллиарды лет и за это время ничего опасного не случилось. Однако чего следует бояться? Опасность есть и очень большая, о которой даже не догадываются те, которые экспериментируют на БАК! В БАК разгоняют до ранее не достижимых около световых скоростей сравнительно тяжёлые частицы. И, если только они по какой-то причине отклонятся от заданной траектории движения и поэтому попадут в детектор или ещё куда-нибудь, то они, обладая большой скоростью и удельной энергией, а её пытаются увеличивать, начнут вышибать электроны из атомов не радиоактивных веществ, провоцирую тем самым ранее неизвестную ядерную реакцию. После чего начнётся самопроизвольное деление ядер практически всех веществ. Причём это будет атомный взрыв не виданной ранее силы. Вот из-за этого и исчезнет: сначала БАК со Швейцарией, затем Европа и весь земной шар. Хотя на этом быть может всё и остановится, но всех нас уже не будет. Это и будет катастрофа космического масштаба. Поэтому пока не поздно надо персоналу БАК проявить смелость и немедленно приостановить эксперименты на БАК до выяснения истинной причины: так это будет или не так? Быть может я, к счастью, ошибаюсь. Хорошо, если бы это было так. Только коллектив учёных может дать правильный ответ на этот вопрос. Колпаков Анатолий Петрович, инженер-механик