Кинематическая пара механизма создающая пять связей. Виды кинематических пар и их краткая характеристика

Характер относительного движения звеньев, допускаемого ки­нематической парой, зависит от формы звеньев в местахих кон­такта.

Совокупность возможных мест контакта образует на каждом из двух звеньев элемент кинематической пары. Элементом кинематической пары может быть точка , линия , поверхность.

Кинематические пары, элемент которых точка или линия , назы­ваютсявысшими ; кинематические пары, элемент которых поверхность , называются низшими .

В зависимости от геометрии одного (или обоих) из соприкасающихся звеньев различаюткинематические пары сферические, конические, цилиндрические, плоскостные, винтовые.

По характеру допускаемого кинематической парой относительного движения звеньев различают вращательные (В), поступательные (П), вращательно-поступательные (В + П) и с винтовым движением ВП. Различие пар типа В + П и ВПзаключается в том, что в первых относительные движения (вращательное и поступательное) независимы, а во вторых одно движение не может быть осуществлено без другого.

Наряду с парами звеньев, соприкасающихся по одной поверхности, линии или точке, в практике применяют пары с многократным соприкосновением. Это или повторение элементов взаимодей­ствия (шлицевые, многозаходные винтовые, зубчатые пары), или использование одновременного соприкосновения по по­верхности и линии (сферическая пара со штифтом), по цилиндрической и плоской поверхностям (пара со скользящей шпон­кой). Повторение соприкосновений звеньев характеризует эквивалентность пар различных видов. Пара с трехточечным контактом может быть эквивалентна плоскостной или сферической низшей паре по характеру движения звеньев.

Для твердого тела, свободно движущегося в пространстве, число степеней свободы (число независимых между собой возможных перемещений механической сис­темы) равно шести: три поступательных вдоль осей Х, Y, Z и три вращательных вокруг этих осей (рис.2.1).

Для звеньев, входящих в кинема­тическую пару, число степеней свободы всегда меньше шести, так как условия соприкосновения (свя­зей) уменьшают число возможных перемещений одного звена относительно другого: одно звено не может внедряться в другое и не может от него удаляться.

В общем случае каждая кинематическая пара накладывает на относительное движение звеньев S связей, допуская Н=6 – S относительных движений звеньев. В зависимости от числа наложенных связей S (оставшихся степеней свободы H) различают 5 классов кинематических пар. Такая классификация кинематических пар предложена И.И.Артоболевским (таблица 2.1)

В таблицах 2.2-2.4 приведены примеры конструктивного выполнения кинематических пар. Приведенные в табл.2.2 и 2.4 пары классифицированы исходя из предположения, что трение и деформация звеньев отсутствуют. Трение позволяет использо­вать отдельные пары во фрикционных передачах. С учетом деформации пары с точечным контактом могут превращаться в пары с поверхностным сопри­косновением.


Таблица 2.1

Виды кинематических пар

Одним из основных характерных свойств кинематических пар является количество простейших относительных движений, которых лишаются звенья механизма при соединении их в кинематические пары. Поясним это на примере. Известно, что свободное твердое тело имеет шесть степеней свободы. Произвольное перемещение его в пространстве можно представить как результат сложения шести независимых движений: трех поступательных параллельно осям координат Ox, Оу, Oz и трех вращательных вокруг осей, параллельных этим осям (рис. 1.2). В зависимости от вида соединений звеньев механизма одно из них может совершать относительно другого одно, два, три, четыре или пять движений из шести, перечисленных выше. Следовательно, кинематические пары накладывают на относительные движения звеньев определенные ограничения, которые зависят от способа их соединения. Такие ограничения называются связями . Число S связей (геометрических), ограничивающих относительные движения звеньев, определяется равенством S= 6 – IT, где W – число степеней свободы звеньев, образующих кинематическую пару.

Академиком И. И. Артоболевским введена классификация кинематических пар, согласно которой все пары де

Рис. 1.2

лятся на пять классов в зависимости от числа S. Разделение кинематических пар по классам представлено в табл. 1.1. Стрелками здесь отмечены возможные перемещения звеньев, которые сохраняются после образования пары. Для каждого класса указаны число степеней свободы W и число геометрических связей S. Приводятся условные изображения кинематических пар различных классов.

Таблица 1.1

Схематическое изображение кинематических пар

Условное

изображение

Класс кинематической пары

Кинематические пары разделяют на низшие и высшие, в зависимости от вида составляющих их элементов. К низшим кинематическим парам, элементами которых являются поверхности, относятся пары поступательная, вращательная, сферическая, винтовая и плоскостная (см. табл. 1.1). Точки и линии – элементы высших кинематических пар. К высшим кинематическим парам относятся пары "шар на плоскости" и "цилиндр на плоскости" (см. табл. 1.1). Преимущества низших пар – их способность передавать значительные усилия при меньшем износе в сравнении с высшими парами; для высших пар – возможность воспроизводить с их помощью достаточно сложные относительные движения.

Кинематические цепи

Кинематическая цепь это связанная система звеньев, образующих между собой кинематические пары. Кинематические цепи можно разделить на плоские и пространственные, простые и сложные, замкнутые и незамкнутые (рис. 1.3). К простым относятся цепи, у которых каждое звено входит не более чем в две кинематические пары (рис. 1.3, а, б, г); к сложным – цепи, у которых имеются звенья, входящие в три и более кинематические пары (рис. 1.3, в); к замкнутым – цепи, у которых каждое звено входит по крайней мере в две кинематические пары (рис. 1.3, б–г), к незамкнутым – цепи, у которых есть звенья, входящие только в одну кинематическую пару (рис. 1.3, а). Все подвижные звенья плоской кинематической цепи совершают движения, параллельные одной и той же неподвижной плоскости (см. рис. 1.1). В пространственных кинематических цепях точки звеньев описывают пространственные кривые либо движутся по плоским кривым, лежащим в пересекающихся плоскостях (рис. 1.4).

Введя понятие кинематической цепи, можно дать другое определение для механизмов, составленных только из твердых тел. Механизмом называется кинематическая цепь, в которой при одном неподвижном звене (стойке) и заданном движении одного или нескольких звеньев (ведущих ) все остальные звенья (ведомые ) совершают однозначно определенные движения. Механизмы могут быть образованы как замкнутыми, так и незамкнутыми кинематическими цепями. Примером незамкнутой кинематической цепи может служить механизм элементарного манипулятора (рис. 1.5).

Рис. 1.3

Рис. 1.4

Рис. 1.5

Большинство механизмов образовано замкнутыми кинематическими цепями (см. рис. 1.1, 1.4).

При исследовании механизмов используются их условные изображения, составляются структурные, кинематические и другие схемы. Структурные схемы выполняются в виде чертежа, на котором с учетом условных обозначений, установленных ГОСТом, изображают звенья, кинематические пары, указывают стойку и ведущие звенья (см. рис. 1.1). Структурные схемы, выполненные в определенном масштабе, называются кинематическими схемами .

Кинематической парой ( сокращено - парой) называют подвижное соединение двух соприкасающихся звеньев. Ограничение, наложенное на движение твердого тела, называют условием связи.

Таким образом, кинематическая пара накладывает условие связи на относительное движение двух соединяемых звеньев. Очевидно, что наибольшие число условий связи, наложенное кинематической парой, равно пяти (5).

Различное число условий связи, накладываемое на относительное движение звеньев кинематическими парами, позволяет разделить последние на пять классов, так что пара k-го класса накладывает k условий связи, где k из {1,2,3,4,5}. Отсюда следует, что кинематическая пара k-го класса допускает в относительном движении звеньев 6k степеней подвижности.

Следует заметить, что в механизмах применяются кинематические пары только пятого, четвертого и третьего классов. Кинематические пары первого, второго классов не нашли применения в существующих механизмах. шарнирный рычажный механизм кинематический

Высшие пары - это пары, в которых при соединении двух звеньев, контакт осуществляется на кривых и точках.

Низшие пары - это пары, в которых при соединении двух звеньев, контакт осуществляется по поверхностям.

Данный механизм состоит из 6 звеньев рисунок (2).

  • А) 1- Кривошип, подвижное звено, совершает вращательное движение;
  • Б) 2,4-шатуны, подвижные звенья, совершают сложные движения;
  • В) 3,5- ползуны, подвижные звенья, совершают поступательное движение;
  • Г) 6- стойка, неподвижное звено;

Количество подвижных звеньев=5.

Определение степени подвижности механизма.

В рассматриваемом механизме семь (7) кинематических пар, из которых пять (5) вращательных и две (2) поступательные.

Степень подвижности механизмов определяется по формуле:

W=3(n-1)-2P5-P4;

n - Число звеньев;

P5 - количество кинематических пар 5 класса;

P4 - количество кинематических пар 4 класса;

w=3(6-1)-2*7=1; w=1;

Группа ассуры и группы начального звена.

Разделим механизм на группы асура. Для этого выделим группы начального звена. Так как степень подвижности механизма w=1, то и группы начального звена должно быть w=1. В группу входит стойка (6) и подвижное звено (1).

Простейшие группы звеньев, присоединение к которым к другим звеньям механизма не изменяет числа его степеней свободы, называют группами асуры. Поскольку единственное неподвижное звено вошло в группу начальных звеньев, то группы ассуры содержит только подвижные звенья.

Степень подвижности группы асуры w=0 и может быть определена как число степеней свободы группы относительно неподвижного звена. Группы ассуры классифицируются по числу кинематических пар, которыми они присоединяются к основному механизму. Это число определяет порядок группы. Кроме того группа ассуры имеет класс определяемый числом кинематических пар, образующих наиболее сложный замкнутый контур.

Кинематическая пара – это подвижное соединение двух соприкасаю- щихся звеньев, допускающее относительные движения

    по относительному движению звеньев:

вращательные; поступательные; винтовые; плоскостные; сферические;

    по виду контакта звеньев:

низшие – это кинематические пары, в которых контакт звеньев, их образующих, осуществляется по плоскости или по поверхности;

высшие – это кинематические пары, в которых контакт звеньев, их образующих, осуществляется по линии или в точке;

    по способу обеспечения контакта звеньев, образующих кинематиче- ские пары: силовые – это кинематические пары, в которых постоянство контакта звеньев обеспечивается за счет действия сил тяжести или силы упругости пружины;геометрические – это кинематические пары, в которых постоянство контакта звеньев реализуется за счет конструкции рабочих поверхностей звеньев;

    по числу условий связи, накладываемых на относительное движение звеньев, образующих кинематическую пару (число условий связи определяет класс кинематической пары);

    по числу подвижностей в относительном движении звеньев (число подвижностей определяет подвижность кинематической пары).

Связи – это ограничения, наложенные на движения звеньев механизма, делающие их несвободными и предназначенные для передачи энергии или информации между этими звеньями.

Для образования кинематической пары необходимо наличие как мини- мум одной связи, ибо в случае равенства числа связей нулю звенья не взаи- модействуют, т. е. не соприкасаются, следовательно, кинематическая пара не существует

6.Кинематические цепи. Виды кинематических цепей

Все механизмы состоят из совокупности звеньев, образующих кинема- тические пары, которые составляют кинематические цепи.

Кинематическая цепь – это система звеньев, образующих между собой кинематические пары

Кинематические цепи подразделяются:

    по конструктивному исполнению:

простая – это кинематическая цепь, каждое звено которой входит в состав не более двух кинематических пар, т. е. содержит только одно- или двухвершинные звенья.

сложная – это кинематическая цепь, имеющая звенья, входящие в состав трех и более кинематических пар, т. е. содержит хотя бы одно звено с тремя или более вершинами

    по взаимодействию звеньев:

незамкнутая, или разомкнутая – это кинематическая цепь, в которой хотя бы одно звено имеет свободный элемент, не взаимодействующий с други- ми звеньями и не образующий с ними кинематических пар.

замкнутая – это кинематическая цепь, каждое звено которой входит в состав как минимум двух кинематических пар

Кинематическое соединение – это кинематическая пара, образованная звеньями нескольких кинематических цепей.

В зависимости от сложности структуры в механизме может присутст- вовать несколько кинематических соединений.

Движение твердых тел в механизмах рассматривают относительно звена, принимаемого условно за неподвижное и называемого стойкой (станина станка, корпус двигателя, шасси). Все остальные твердые тела, совершающие движение относительно стойки, называют подвижными звеньями. Каждое звено может состоять из одной или нескольких деталей, но в составе звена они не могут иметь относительного движения, т.е. образуют неразъемные или разъемные соединения отдельных деталей.

По выполняемым функциям звенья могут быть входными и выходными, ведущими и ведомыми, начальными и промежуточными. Входному звену сообщается движение, преобразуемое механизмом в требуемое движение других звеньев. Ведущее звено – звено, для которого элементарная работа внешних сил, приложенных к нему, является положительной. Выходное звено – звено, совершающее движение, для выполнения которого предназначен механизм. Ведомое звено – звено, для которого элементарная работа приложенных к нему внешних сил отрицательна или равна нулю.

Если звену задается одна или несколько обобщенных координат, определяющих положение всех механизмов относительно стойки, то звено называют начальным. Обобщенная координата механизма – это каждая из независимых между собой координат, определяющих положение всех звеньев механизма относительно стойки.

В зависимости от назначения механизма звеньям присваивают функциональные названия: кривошип , шатун, коромысло, поршень, шток, ползун, кулиса, кулачок, толкатель, зубчатое колесо, водило, сателлит, рычаг, траверса, коленчатый вал, распределительный вал и др.

В конкретных механизмах входное звено может быть как ведущим, так и ведомым на отдельных этапах движения в зависимости от приложенных сил и моментов сил, например вал двигателя в режимах разгона и торможения, вал электродвигателя при двигательном и генераторном режимах.

Напомним, что кинематической парой называют соединение двух твердых тел механизма, допускающее их заданное относительное движение (см. раздел 1.1). В паре при взаимодействии ее элементов происходит относительное движение звеньев. Число степеней свободы в относительном движении звеньев определяет вид пары по подвижности. Различают пары одноподвижные , двухподвижные , трехподвижные , четырехподвижные и пятиподвижные . Вид пары зависит от геометрических связей между элементами пары, т.е. условий, ограничивающих перемещения звеньев. Число уравнений связей в паре принимают за номер класса пары.

Каждый элемент сопряжения кинематической пары является совокупностью поверхностей, линий и отдельных точек, образуемых элементами двух твердых тел. Элемент обобщенный термин, относящийся к номинальнойповерхности, форма которой задается на чертеже или в другой технической документации. Реальные поверхности и реальные профили элементов пар могут иметь отклонения формы и отклонения расположения. Числовое значение предельных отклонений нормируется допусками цилиндричности, круглости, плоскостности, прямолинейности, параллельности в зависимости от степени точности и интервала размеров. Поверхность – это общая часть двух смежных областей пространства. В теории механизмов рассматривают поверхности с идеальной формой и идеальным расположением. При несоблюдении этого условия в парах появляются избыточные локальные связи, так как уравнения связей не являются тождественными, и пара становится статически неопределимой. Если элементы сопряжения в кинематической паре конгруэнтны, т.е. поверхности совпадают во всех своих точках, то пару называют низшей . Пары имеющие сопряжения, элементом которых являются линия или точка, называют высшими. Линия – это общая часть смежных областей поверхности.

Систему звеньев, соединенных между собой парами, называют кинематической цепью . Различают плоские и пространственные, замкнутые и незамкнутые, простые и сложные кинематические цепи.

В замкнутой цепи звенья образуют один или несколько контуров. Контур может быть жестким или иметь степени свободы. Количество степеней свободы определяет класс контура. В плоской цепи все подвижные звенья совершают плоское движение, параллельное одной и той же неподвижной плоскости. В простой цепи звено входит в одну или две кинематические пары. В сложной цепи имеется хотя бы одно звено, образующее больше двух кинематических пар.

Аналогами кинематических пар являются кинематические соединения , выполненные из нескольких подвижных деталей с поверхностным, линейным или точечным контактом элементов в форме компактной конструкции и обеспечивающей возможность разложения относительного движения на составляющие, эквивалентные парам соответствующего вида.

Схему механизма, содержащую стойку, подвижные звенья, кинематические пары с обозначением их вида и указывающую взаимное расположение элементов механизма, выполненную без масштаба, называют структурной схемой механизма .

Наиболее широко в механизмах машин, приборов и других устройств применяют вращательные пары (В ), которые допускают только одно вращательное движение одного звена относительно другого. На структурных и кинематических схемах они имеют условные обозначения в соответствии с рекомендациями международных стандартов (рис. 2.1, а ). Номи-нальные поверхности элементов 1, 2 вращательной пары обычно цилиндрические (рис. 2.1, б ), но могут иметь и другие формы(например, конические, сферические). На рис. 2.1, в приведена структурная схема манипулятора промышленного робота, на которой указаны шесть вращательных пар: О (0–1 ),А (1–2 ),В (2–3 ),С (3–4 ),D (4–5 ),E (5–6 ), связывающих звенья с соответствующими номерами. Схват 6 / имеет шесть степеней свободы, что равно числу одноподвижных пар незамкнутой кинематической цепи. В реальных конструкциях часто используют кинематические соединения, которые содержат несколько подвижных звеньев и несколько кинематических пар, но в таком аналоге вращательной пары только два звена соединяются с другими звеньями механизма. Конструкция подшипника качения, имеющего наружное 1 и внутреннее 2 кольца, между которыми расположены шарики 3, удерживаемые на определенном расстоянии друг относительно друга с помощью сепаратора 4 приведены на рис. 2.2, а.

Рис. 2.1. Структурная схема манипулятора промышленного робота

Рис. 2.2. Подшипники качения и их условные обозначения

В зависимости от направления воспринимаемой радиальной или осевой силы различают подшипники радиальные (рис. 2.2, б ), упорные (рис. 2.2, в ) и радиально-упорные (рис. 2.2, г ). На схемах используют соответствующие условные обозначения (рис. 2.2, д ). Рабочие поверхности в подшипниках скольжения могут иметь непосредственный контакт (сухое трение), быть разделены жидкостью (жидкостные, гидростатические, гидродинамические подшипники), газом (аэродинамические, аэростатические газовые) или разделены магнитными силами (магнитные опоры).

При использовании вместо вращательной пары кинематических соединений уменьшаются потери на трение, упрощается технология изготовления узлов за счет применения стандартных подшипников, увеличивается несущая способность узлов машин. Схему кинематической пары, отражающей только необходимое число геометрических связей, называют основной . Основная схема пары не содержит избыточных связей. Действительная схема пары может содержать дополнительные связи, но они должны быть тождественными (совпадающими). Устранение избыточных локальных связей в кинематическом соединении при установке валов и осей на нескольких подшипниках обеспечивается надлежащей точностью изготовления деталей и монтажа сборочных единиц. На рис. 2.3 показан длинный вал, установленный на трех шариковых подшипниках А , А / , А // . Соосность базовых поверхностей (рис. 2.3, а ) подшипников зависит от точности расточки отверстий в корпусных деталях и может регулироваться путем установки корпусов подшипников на станине (рис. 2.3, б ) в случае отклонений от прямолинейности общей оси A А / А // за счет смещения или наклона осей отдельных подшипников. При разработке технической документации на кинематические соединения, согласно ГОСТ 24642-81 и 24643-81, обычно указывают предельные отклонения от параллельности поверхностей вращения, отклонения от соосности (радиальное биение), отклонения от концентричности, отклонения от перпендикулярности.

Рис. 2.3. Вал, установленный на трех подшипниках качения

Для примера на рис. 2.4 приведена схема двухопорного вала с указанием для шеек А и В допусков цилиндричности (поз. 1 и 5 ), соосности (поз. 2 и 6) и перпендикулярности торцов (поз. 3 и4 ), которые должны быть выдержаны при шлифовании вала.

Рис. 2.4. Схема двухопорного вала

Аналогичные требования предъявляются при изготовлении отверстий в базовой детали (корпусе). В некоторых конструкциях (рис. 2.5) отклонения от прямолинейности из-за несоосности корпусных отверстий (рис. 2.5, а ) или наклона осей (рис. 2.5, б, в ) компенсируются с помощью сферической внешней поверхности наружного кольца шарикоподшипника и сферической поверхности в корпусе подшипникового узла. При надлежащей сборке узлов обеспечиваются прямолинейность оси кинематического соединения и тождественность геометрических связей за счет исключения избыточных связей.

Рис. 2.5. Схемы установки валов при незначительных отклонениях от прямолинейности

При значительных отклонениях оси вала от прямолинейности (рис. 2.6) вал устанавливают на специальных подшипниках, имеющих сферическую внешнюю поверхность наружного кольца. Такое кинематическое соединение обеспечивает вращение вала при наличии отклонения шеек А и А / вала от соосности (рис. 2.6, а ) и прямолинейности (рис. 2.6, б, в ).

Рис. 2.6. Схемы установки валов при значительных отклонениях от прямолинейности

Число дополнительных связей в реальной конструкции пары или кинематического соединения называют степенью статической неопределимости пары.

Консольный вал 1 с цилиндрической опорой 2, нагруженной в точке С силой F , показан на рис. 2.7, а . В опоре А можно методами статики найти реактивный момент и реакцию, а также прогибы в любой точке вала. Прогиб в точке С при условии а = b можно уменьшить в восемь раз, если ввести в конструкцию тождественные элементы А / с пятью дополнительными связями (рис. 2.7,б ). Число тождественных локальных связей можно уменьшить, если на правом конце вала установить плавающий сферический подшипник (рис. 2.7, б ), дающий только две дополнительные связи в опоре А / . Если вал установить в виде кинематического соединения с двумя сферическими подшипниками, из которых один плавающий, а второй неподвижен в осевом направлении (рис. 2.7, г ), то вал становится статически определимым, при этом в опорах реактивные моменты равны нулю. Однако прогиб такого вала в точке С (при а = b ) меньше прогиба для консольного вала только в два раза. Отсутствие избыточных локальных связей делает конструкцию пары нечувствительной к температурным и силовым деформациям вала и корпуса, а также к отклонениям в расположении осей элементов соединения.

Рис. 2.7. Схемы установки валов при расчетах реакций в опорах

Итак, в случае применения тождественных элементов уменьшаются допуски на форму и расположение сопрягаемых поверхностей, что обеспечивает сборку без деформации звеньев в кинематической цепи и устранение дополнительных сил в кинематических парах. При повышении точности сопряжения увеличиваются затраты на изготовление, но повышаются жесткость и несущая способность валов и осей, надежность и долговечность машины. Поэтому вопрос о допустимости тождественных связей, которые при деформации стойки или других звеньев могут быть избыточными, решается с учетом условий работы кинематической пары, затрат на изготовление, ремонт и эксплуатацию машины.

Оптимальная конструкция пары или соединения – понятие относительное: конструкция, оптимальная для одних условий, может быть неприемлемой для других. Оптимизация часто связана с технологичностью, под которой понимают совокупность свойств конструкции, проявляемых в оптимальных затратах труда, материалов, средств и времени при заданных показателях качества, объема выпуска, условиях изготовления, эксплуатации и ремонта машины. Конструкция, технологичная в единичном производстве, зачастую оказывается мало технологичной в массовом производстве и совершенно нетехнологичной в поточно-автоматизированном производстве и наоборот.

Схемы и условные обозначения основных видов кинематических пар приведены в табл. 2.1. Каждой паре в реальных конструкциях могут соответствовать конструктивные варианты кине-матических соединений в виде нескольких деталей, имеющих различное сочетание местных подвижностей, не влияющих на основную подвижность пары. Например, роликовый подшипник эквивалентен двухподвижной цилиндрической паре; шарикоподшипник сферический, допускающий перекосы осей в определенных пределах, эквивалентен сферической трехподвижной паре; упорный шарикоподшипник со сферической наружной поверхностью, установленный на конусной поверхности, эквивалентен пятиподвижной точечной паре.

Таблица 2.1

Основные виды кинематических пар

Кинематические соединения обычно имеют большое число избыточных локальных связей. Их можно устранить, используя принцип многопоточности. В таких конструкциях за счет высокой точности изготовления (например, шариков и колец в шарикоподшипниках) избыточные локальные связи являются тождественными. При этом статическая неопределимость соединения не оказывает вредного влияния на функционирование вращательной пары.