Нитевые светодиодные лампочки. Что такое филаментная LED лампа

Светодиодное освещение с каждым днём всё больше закрепляется на рынке световой продукции, за счёт своей практичности и экономичности самих светодиодов. Пользователю доступны различные светодиодные лампы любого формата, которые внешне могут не отличаться от аналогичных , что в свою очередь в некоторых случаях играет очень важную роль.

Человек может приобрести лампу с круглой колбой и стандартным цоколем Е27 или Е14 и установить её вместо устаревшего источника света. Лампа будет имееть такую же форму и принцип подключения, как и лампа накаливания. Благодаря работе ведущих инженеров фирм по производству светодиодной техники и развитию новых технологий, пользователю стали доступны инновационные . Данный вид освещения полностью копирует лампу накаливания, и пользователь если не уделит внимание источнику света, то не сможет даже заметить отличия. Такие лампы применяются повсеместно, заменяя собой устаревшие аналогичные источники света.

Принцип работы любой светодиодной лампы заключается в излучении светового потока специальным устройством, а именно светодиодом который имеет очень маленькие размеры. Как правило, светодиод имеет плоскую конструкцию, поэтому при излучении светового потока его рассеивания происходит на 180°, поскольку больший спектр просто напросто не позволяет обхватить конструкция. Филаментные световые модули имеют много отличий и принципиально разный подход в излучении светового потока. Основное отличие данных ламп заключается в том, что они используют светодиодные филаментные нити, которые способны излучать световой поток вокруг себя на 360°.

Разработчики светодиодного освещения при изготовлении модуля расположили в колбе лампы данные нити вертикально, таким образом, они могут быть очень длинными. К нитям в лампе подводятся контакты, обеспечивающие подачу электроэнергии. Светодиодные лампы, основанные на филаментных нитях, по видимым признакам отличаются от ламп накаливания лишь одной деталью, а именно, нить расположена в лампе накаливания горизонтально, а в светодиодной вертикально.

Филаментные светодиодные лампы имеют такое же строение и подсоединение к электросети по средствам цоколя Е14 , Е27 как и обычные светодиодные источники света однако их колба полностью прозрачная и пользователь может видеть всё внутреннее устройство лампы. В некоторых лампах у основания имеется специальный электронный модуль, который обеспечивает бесперебойную подачу электроэнергии на светодиодные нити. Данный модуль так же защищает лампу от скачков напряжения. Филаментные светодиодные лампы очень экономичные в плане потребления электроэнергии по сравнению с любыми источниками света, поэтому человек сможет извлечь большую выгоду, используя данный вид освещения.

Решил я приобрести упаковку светодиодных сборок для экспериментов. В статье я попытаюсь протестировать их последовательное включение, а также варианты их применения.

Заказывал я у продавца, который продаёт их по 20 штук. Я заказал 40 штук, но попросил положить 30 «холодных» и 10 «тёплых». Продавец так и сделал, и я получил 35 + 15 штук. Добра ему. Стоило это всё каких-то 13$ на момент покупки.








Сразу прошу прощения, но магазин больше не продаёт этот лот. Мне пришлось указать в ссылке на товар другой магазин, ещё я прошелся поиском и выудил там магазины с похожим товаром.

А изначально я собирался использовать их в создании семисегментных индикаторах на «скорую руку». Думал, что если их расположить просто на текстолите, да наладить их яркость в зависимости от освещённости комнаты - выйдут неплохие настольные часики. Я немного ошибся. Контрастность таких импровизированных индикаторов ниже плинтуса. А вырезать желобки, красить чёрной краской и накрывать это всё матовым орг.стеклом мне было лень.





Но руки чесались и решил я искать им применение на ходу. Для начала, изучаем их внимательней, ну и тестируем заявленные параметры. Как-то я лихо начал и даже не объяснил, что же покупка из себя представляет.

Описание

COB LED – один или сборка светодиодов покрытая люминофором
Filament - в данном случае означает, что сборка нитевидной формы

Плюсы:
- не нагревается
- всенаправленный свет
- приспособлены для работы в сети 220v

Минусы:
- вся сборка перестаёт работать при выгорании кристалла одного светодиода
- некоторые виды могут быть хрупкими (но есть залитые твёрдым компаундом)
- не найдут применение в низковольтной аппаратуре
- не любят пайку (подразумевается сварка)

Разбираем

Один экземпляр представляет собой палочку чуть меньше спички. Покрытие жёлтого цвета в моём случае является резиной (бархатистая и упругая поверхность). Внутри которой прозрачная площадка с нанесёнными на неё кристаллами swarovski светодиодами (24 штуки). На краях площадки крепятся металлические лепестки. Но крепятся они просто обжимая площадку и тут поджидает пара нюансов:
- такая сборка очень хрупкая
- металлические площадки тонкие и плохо паяются
- нагревать металлические площадки не рекомендую, есть вероятность повреждения контакта





Перед включением я попросил продавца спецификацию на светодиоды. Он мне прислал спеки на продукцию Runlite.
Кому интересно, могут полюбопытствовать.

А я пока начну зажигать

Положительный вывод у светодиодов помечается еле заметным отверстием. Определитесь с полярностью перед заливанием его припоем. Паять контакты одно мучение. Если не использовать активные флюсы, то сначала хорошо бы шлифануть контакты пилочкой с алмазным напылением. И лишь потом подносить торец контакта к нагретому паяльнику. Паять нужно быстро, не допуская прогрева пластины.
Контакты очень тонкие и легко сгибаются, так что паять к ним сколь-либо тонкий проводник чревато выламыванием контакта. Я использовал очень тонкие жилки для работы с светодиодами. Но металлические контакты магнитятся, так что есть вариант подключения к магнитикам.

При подаче 62v светодиодная сборка начинает открываться и потреблять около 0.001A. При 64v ток вырастает до 0.003A - и такой светодиод можно использовать в качестве индикатора или ненавязчивой подсветки.

Вот начиная с 70v ток нужно ограничивать на уровне 0.016A. В таком режиме яркость светодиода максимальна. Измерить нет возможности, но при таком освещении уже можно читать.

За всё время тестирования ни одна из филаментяшек не нагревается вообще никак*. С закрытыми глазами и дотрагиваясь пальцем я отличил бы включённый образец от выключенного только по тому как оно бьётся током. При всём этом «выход на режим» имеется, за 15 секунд ток повышается примерно с 0.014 до 0.017А (при о ограничении тока резистором).

* под «не нагревается вообще никак» подразумевается нагрев до температуры 70-80 градусов. Но из-за малой теплоёмкости они успевают остыть при касании пальцами.



Теперь продемонстрирую различие между «тёплыми» и «холодными» вариантами.
Выдержку и цветопередачу подбирал сравнивая фото с реальным положением дел.
Я дополнительно установил в качестве фона карточки для выставления баланса белого.







5 светодиодов



5 штук (62v*5=310v …… 74v*5=370v ). В этом случае яркость зависит от напряжения. Если бы было 355-370v ток уже нужно удерживать на уровне 12-15мА. Но напряжение после выпрямления было на уровне всего 311v, а общий ток не превышал 3мА. Яркость при потребляемых 1W небольшая, примерно как у 10W лампочки накаливания. Я знал, что 5 сборок светодиодов не откроются на таком малом напряжении. Просто я решил проверить одну идею. А именно - сколько продержится импровизированная лампочка после «внезапного выключения света»? Для этих целей я снабдил конструкцию конденсатором на целых 150мкФ.


В течении первой минуты светодиоды потребляли 0.12W и их свет был достаточен для ориентации в кромешной темноте. Потом ещё четыре минуты они лишь обозначали своё присутствие. Конденсатор разрядился с 309 v до 290V, после чего светодиоды закрылись, а конденсатор оставался заряженым ещё долго и заряд не расходовался. По этой причине увеличение ёмкости конденсатора не позволит существенно продлить эффект.







4 светодиода

4 штуки (62v*4=248v …… 74v*4=296v ). Напряжение после выпрямления было на уровне 309v и общий ток я ограничил 15мА. Яркость при потребляемых 4.65W, где-то на уровне стандартной 45W лампочки накаливания. А вот воплощение идеи «автономного освещения» выглядит блекло. Конденсатор в 150мкФ на открытых диодах разряжается быстро - за 3-4 секунды всё заканчивается. Какой-никакой, но эффект всё равно есть. Фотографировать не стал, так как фото не передадут эффекта. Ну, главное, что идея с послесвечением работоспособна. А уж как использовать этот эффект - дело рукоделия читателей.

Конец

Мне светодиодные сборки понравились. Они не нуждаются в радиаторе, но требуют высокого напряжения. Можно собирать оригинальные светильники и встраивать в декор. Надеюсь, вам тоже было интересно.

P.S.

Если будут вопросы о используемом преобразователе - к сожалению, но выше 67V он не выдаёт, так что выйти в режим не получится, в остальном можно и «зажигать». Планирую купить +42 Добавить в избранное Обзор понравился +95 +155

В ноябре 2013 года, прогуливаясь по выставке «Интерсвет», я увидел несколько стендов из Поднебесной с... вполне обычными, на первый взгляд, лампами накаливания. Непроизвольно возник вопрос: что же побудило китайских производителей представить технологию более чем вековой давности? Только при внимательном рассмотрении обнаружилось, что они, на самом деле, светодиодные. Уже на следующий год эти необычные лампы стали продаваться в российских магазинах. Новинка не была никак проанонсирована, производители сохраняли интригу, не сообщая принцип работы, что побудило множество слухов в профессиональной среде. Такой подход не только привлек интерес потребителей, но и, напротив, отпугнул многих из них. Оставалось непонятно, можно ли на практике применять необычные лампы. В этой статье будет сорван покров тайны с загадочного изобретения.

Во многих моделях светильников нить накала лампы является важным элементом дизайна. Поэтому заменить лампу накаливания в них до недавнего времени было нечем. Создать компактную люминесцентную лампу (КЛЛ), которая по форме светящегося тела точно соответствовала бы лампе накаливания, физически невозможно. Светодиоды являются миниатюрными источниками света, что открыло перспективы решения данной проблемы. Например, были созданы лампы, в которых светодиоды располагались на узкой линейке внутри колбы, линейка, в свою очередь, соединялась с теплоотводом вне колбы. Недостатками такой конструкции были ограничение по мощности (светодиодная лампа по световому потоку эквивалентна лампе накаливания мощностью не более 25 Вт), а также высокая стоимость. К тому же полного соответствия дизайна лампе накаливания достичь так и не удалось.

В 2008 году японской компанией Ushio были созданы первые светодиодные лампы, внешне неотличимые от ламп накаливания. Новинка получила название Filament LED Bulb от английского слова Filament, в переводе означающее «нить накаливания». В русском языке сначала появился термин «светодиодные лампы накаливания», однако, он не прижился, так как объединял в себе противоречащие друг другу понятия. На момент написания статьи уже устоялся термин «филаментные светодиодные лампы» (ФСЛ).

Первоначально ФСЛ выпускались только для декоративных целей, их световой поток был недостаточен для общего освещения. Поэтому за пределами Японии они не получили известности. Прорыв произошел в 2013 году, когда несколько китайских компаний одновременно представили мощные ФСЛ для общего освещения, эквивалентные по световому потоку лампам накаливания мощностью до 60 Вт.

Следует отметить, что, хотя создание ФСЛ и диктовалось в первую очередь эстетическими соображениями, разработка их конструкции не сводилась только к размещению светодиоды таким образом, чтобы они имитировали нить накаливания. Пришлось глубоко переосмыслить множество вопросов, связанных с конструкцией светодиодных источников света, в результате чего получилась принципиально новая разновидность ламп.

Как устроен филамент

В основе ФСЛ лежит технология Chip-on-Glass (COG), ранее уже успешно опробованная при создании дисплеев для мобильных устройств. Она заключается в размещении сверхминиатюрных светодиодов на подложке из искусственного сапфира или, как более дешевый вариант, из специального сорта стекла. Прозрачность подложки позволяет создавать массивы светодиодов, которые светят во все стороны.

Типичный филамент - светодиодный аналог отрезка нити накаливания - представляет собой стержень из искусственного сапфира или стекла длиной диаметром 1,5 мм и длиной 30 мм. На нем при помощи технологии COG размещены 28 светодиодов синего свечения, которые соединены последовательно. В некоторых моделях филамент может содержать несколько светодиодов красного свечения для достижения более теплого оттенка свечения, при этом общее число светодиодов в филаменте также равно 28. Сверху это все покрыто слоем люминофора на силиконовой основе. Потребляемая мощность одного филамента лежит в пределах 0,8-1,3 Вт. Набирая нужное количество филаментов в колбе, можно получить светодиодную лампу требуемой мощности. Известны модели ФСЛ, содержащие до 16 филаментов.

Важным преимуществом филамента по сравнению с традиционными светодиодными матрицами является то, что для равномерного распределения света во все стороны не нужно использовать сложную оптическую систему, вносящую большие потери. Это обеспечивает высокий КПД лампы. Мощность, подводимая кфиламенту, в 1,5 раза выше, чем к традиционной светодиодной матрице, при равном значении светового потока. Уменьшение подводимой мощности означает снижение тепловыделения. Тем не менее, первый вопрос, который возникает у специалиста, впервые взявшего в руки ФСЛ: «Как здесь отводится тепло?». В самом деле, не по элементам же крепления филаментов. Да и теплоотвода никакого, даже простейшего пластмассового, у типичной ФСЛ нет. И здесь мы переходим к другой важной инновации.

Теплоотвод

Филаменты герметично запаяны в стеклянную колбу. Эта колба наполнена специальным газом, обладающим высокой теплопроводностью. Именно через газ и осуществляется отвод тепла от светодиодов. Стеклянная колба с тонкими стенками хорошо проводит тепло, поэтому она и используется в качестве теплоотвода. По утверждению производителей ФСЛ, такая система теплоотвода в ряде случаев оказывается даже более эффективной, чем у светодиодных ламп традиционной конструкции, температура р-n перехода не превышает 60°С.

При изготовлении колб и наполнении их газом используются уже хорошо отработанные для ламп накаливания процедуры. А вот состав газа является производственным секретом, тщательно оберегаемым производителями ФСЛ. Мы можем пока ориентироваться только на неофициальную информацию, размещенную на нескольких профессиональных сайтах, согласно которой колба заполнена гелием - газом с самой высокой (за исключением водорода) теплопроводностью. Другой вариант - смесь газов, где важной составляющей также является гелий.

Параметры ФСЛ

На момент написания статьи (март 2015 года) максимальные значения параметров серийных образцов ФСЛ с обычной колбой типоразмера А60, имеющих коррелированную цветовую температуру 2700 К были следующими:

  • световой поток - 980 лм (соответствует лампе накаливания мощностью 85 Вт);
  • светоотдача всей лампы - 116 лм/Вт (некоторые производители заявляют о значениях до 150 лм/Вт, но эти данные не подтверждены независимой экспертизой);
  • индекс цветопередачи CRI - 90;
  • срок службы, заявленный производителем - 30 000 часов;
  • возможность диммирования.

Следует отметить, что выпускаются ФСЛ со сферической колбой диаметром 95 мм, обладающей большей площадью поверхности, чем колба А60. Это обеспечивает лучший теплоотвод по сравнению с колбой А60, что позволяет достичь светового потока 1500 лм.

К одному филаменту подводится напряжение около 100 В. Поэтому все ФСЛ выпускаются для непосредственного подключения к осветительной сети, низковольтные модели (скажем, на 12 В) не производятся. ФСЛ на момент статьи выпускались под европейские патроны Е27 и Е14, принятые и в России, американские патроны Е26 и Е12, а также под патроны байонетного типа. Последние, как известно, применяются там, где есть тряска и вибрации, например, на кораблях. Данные об устойчивости ФСЛ к вибрации пока нигде не публиковались, но можно предположить, что она выше, чем у ламп накаливания.

Преимущества и недостатки

Большой интерес к ФСЛ со стороны как специалистов, так и обычных потребителей связан с тем, что эти лампы имеют целый ряд неоспоримых преимуществ:

  • полная совместимость по кривой силы света со светильниками, изначально проектировавшимися под лампы накаливания;
  • высокая светоотдача, обусловленная отсутствием оптической системы для равномерного распределения света в разные стороны;
  • возможность снижения себестоимости производства за счет использования уже имеющихся мощностей по производству ламп накаливания;
  • преодоление психологического барьера при использовании светодиодного освещения в быту.

В то же время, ФСЛ свойственны и некоторые недостатки:

  • малое место под драйвер, вследствие чего используются или драйвера упрощенной конструкции с высоким коэффициентом пульсации, или драйвера с высокой степенью миниатюризации без пульсации, которые стоят очень дорого;
  • история практического применения данного типа ламп для общего освещения насчитывает всего около 1,5 лет, поэтому еще нет достоверной статистики о реальной надежности, есть только теоретические расчеты;
  • для ФСЛ принципиально использование стеклянной колбы, так что, в отличие от других типов светодиодных ламп, они не являются небьющимися;
  • пока ФСЛ производятся лишь малоизвестными китайскими компаниями, что усложняет задачу выбора для потребителей, далеких от светотехники.

Проблема, приведенная в п. 1, решается некоторыми производителями путем добавления кольца между цоколем и колбой, что увеличивает место для драйвера. Решение проблемы, указанной в п. 2 - вопрос времени. П. 4 можно объяснить неповоротливостью, характерной для крупных компаний. Впрочем, и здесь ситуация меняется. Недавно известная тайваньская компания Edison Opto начала производить филаменты на основе искусственного сапфира. Соответственно, использование в лампе филаментов от знаменитого производителя является уже некоей гарантией качества (хотя не стоит забывать, что и от драйвера тоже многое зависит). А скоро на прилавках магазинов появятся ФСЛ, произведенные на очень известном крупном заводе с почти 60-летней историей. И это - российское предприятие.

Российское производство

На апрель 2015 г. намечено начало серийного производства первой отечественной ФСЛ. Делать ее будут на знаменитом заводе «Лисма» в Саранске. Речь идет ФСЛ, которая способна заменить 40-ваттную лампу накаливания с цоколем Е27, потребляющей всего 4 Вт. Как сообщает официальная страница «Лисмы» в социальной сети «ВКонтакте», заявленный срок службы новинки равен 10 ООО часам. Розничная цена, как указано там же, составит приблизительно 120 рублей. Столько же стоит КЛЛ с тем же световым потоком. Но, по сравнению с КЛЛ, потребитель получает в 2 раза меньшее энергопотребление, на 25% больший срок службы, мгновенный старт и возможность использования лампы в самых разнообразных светильниках.

Лампа будет производиться с использованием китайских драйвера и филаментов. Изготовление колбы и цоколя, установку филаментов и наполнение колбы газом, а также сборку лампы будут осуществлять на «Лисме».

Перспективы ФСЛ

С использованием более длинных филаментов, в 2014 году Китае были созданы светодиодные лампы Т8. Правда, пока эта идея дальнейшего развития не получила.

Кроме этого, серийно выпускаются ФСЛ для замены рефлекторных ламп накаливания. Казалось бы, зачем применять данную технологию, когда проблем с совместимостью на уровне кривой силы света у светодиодных ламп, аналогичных рефлекторным лампам накаливания, не возникает? К тому же, дизайнеры светильников практически никогда не оголяют колбы рефлекторных ламп накаливания. Возможно, к выпуску рефлекторных ФСЛ производителей подтолкнула именно высокая технологичность их производства.

И, наконец, австрийская фирма Soft LED продвигает на рынок такое решение, как ФСЛ с... молочной колбой. В такой лампе филаменты, имитирующие нить накаливания, не видны. Тем не менее, их использование позволило обойтись без специального теплоотвода.

Перечисленные примеры показывают, что сочетание технологии COG и отвода тепла от светодиодов с помощью газа само по себе оказалось очень удобным в производстве. Поэтому ФСЛ будут развиваться и в сторону тех применений, где не требуется точное воспроизведение дизайна лампы накаливания.

Алексей ВАСИЛЬЕВ

Попытки замаскировать светодиодную лампочку под лампу накаливания увенчались успехом в 2008 году, когда японским ученым удалось создать первый LED filament. Дальнейшие исследования и развитие технологии производства способствовали улучшению технических характеристик новинки, благодаря чему в 2013 году началось массовое производство филаментных ламп на основе светодиодов.

Внешне новые образцы полностью напоминали лампочки с нитью накала, поэтому первыми активными покупателями оказались люди, желающие сохранить эстетический образ люстры и интерьера комнаты в целом. А экономия электроэнергии и заявленный изготовителем срок службы в 30 тыс. ч. шли в виде дополнительного приятного бонуса.

Какие выводы можно сделать спустя несколько лет эксплуатации филаментных светодиодных ламп и что скрывается внутри прозрачной колбы? Обо всём по порядку.

Устройство filament LED лампочки

В технической терминологии слово «filament» означает «нить накаливания». Поэтому в России постепенно входит в обиход словосочетание «филаментная лампа». Она состоит из 4 основных частей:

  • светодиодные стержни;
  • стеклянная колба;
  • металлический цоколь;
  • плата драйвера.

Иногда в конструкции дополнительно присутствует основание цокольной части. Светодиодный филамент – это стеклянный стержень прямоугольного или круглого сечения, на котором установлены миниатюрные кристаллы светодиодов методом COG (Chip-on-Glass). Все светодиоды одной палочки филамента образуют последовательную электрическую цепочку с анодом и катодом на концах. Её мощность потребления, как правило, составляет 1 Вт. Таким образом, количество стержней в колбе указывает на мощность лампы.

На каждый светодиодный филамент наносится толстый слой силиконового люминофора желтого цвета. Он препятствует прохождению ультрафиолета и способствует равномерному рассеиванию светового потока. Цветовая температура светодиодов соответствует тёплому или нейтральному диапазону, чтобы наиболее точно имитировать предшественников с вольфрамовой нитью.

Питание светодиодных нитей происходит не напрямую, а через драйвер. Так как вместить преобразователь в цоколе стандартного образца практически невозможно, в качестве источника питания используют примитивные электронные схемы. Тем не менее, производители мирового уровня стараются монтировать в цоколе филаментной лампочки полноценный драйвер, обеспечивающий стабильное питание светодиодов.

В дешевых филаментных светодиодных лампах нет предохранителя. Почему-то китайские умельцы не считают нужным размещать в цоколе предохранитель по принципу энергосберегающих люминесцентных ламп.

Стоит отметить, что филаментные лампы одного производителя, но разной мощности и под разные цоколи будут отличаться качеством драйвера и его схемотехникой. Причин этому несколько. Во-первых, внутри цоколя Е27 больше пространства, чем внутри Е14. Значит, в нем можно вместить простейший стабилизатор и сглаживающий конденсатор. Во-вторых, от количества последовательно включенных светящихся нитей зависит напряжение их питания, что создает дополнительные трудности при использовании цоколя малых размеров.

Проблема нехватки места под драйвер успешно решается некоторыми производителями путём увеличения цокольной части филаментной светодиодной лампы, а именно, установкой пластиковой окантовки между цоколем и колбой. За счет пластикового кольца появляется дополнительное пространство под сглаживающий конденсатор и более объемную схему драйвера.

Отвод тепла

Светодиодные нити работают на токе, меньше максимального допустимого, поэтому кристаллы светодиодов не перегреваются. Температура p-n перехода в рабочем состоянии колеблется около 60 °C. В фирменных филаментных лампах внутрь стеклянной колбы закачана газовая смесь на основе гелия, которая имеет высокую теплопроводность. Именно газ служит проводником тепла между филаментами и тонким стеклом колбы. Эффективности данного метода достаточно, чтобы избежать перегрева светоизлучающих кристаллов.

Но, как и в любой конструкции, в филаментной светодиодной лампе не всё так гладко. Потому что присутствует ещё один источник тепла - драйвер. Отсутствие радиатора не позволяет быстро рассеивать теплоту. К тому же малый объём цоколя сильно препятствует охлаждению. Получается, что элементы драйвера – самое слабое звено всей системы. Судя по отзывам пользователей, именно блок управления становится причиной чрезмерного мерцания и поломки изделия. А для качественного драйвера, обеспечивающего минимум пульсаций и стабильность, нужны дорогостоящие радиоэлементы.

О наличии токового драйвера в цоколе можно судить по диапазону напряжения питания, указанного на упаковке. К примеру, в лампе с U пит =85–250 В наверняка установлен качественный стабилизатор тока, защищающий филаментые светодиодные стержни от сетевых перепадов.

Преимущества и недостатки

Основной поставщик филаментных ламп в Россию – Китай. Поэтому качество поставляемой продукции зачастую далеко от идеального. Но всё-таки есть несколько положительных аспектов, благодаря которым светодиодные филаментные лампочки пользуются спросом:

  • высокая схожесть внешнего вида с лампами накаливания, что является обязательным условием в реализации некоторых дизайнерских задумок;
  • угол рассеивания света составляет 360°, а цветовая температура около 3000 °K (этот показатель может находится и в других цветовых температурах), что лучше аналогичных показателей ламп накаливания;
  • высокий уровень светоотдачи, благодаря прозрачной колбе;
  • отсутствие массивного радиатора;
  • продолжительный срок службы (только в случае качественных фирменных изделий);
  • в перспективе возможен выпуск новых типоразмеров с филаментами большей или меньшей длины, а также снижение себестоимости, чтобы сохранить конкурентоспособность.

Теперь о недостатках. За несколько лет эксплуатации филаментные лампы успели прилично пополнить замечаниями свой пассив:

  • изделие неремонтопригодное из-за неразборного корпуса;
  • хрупкая стеклянная колба;
  • зачастую в конструкции применяется примитивный выпрямитель, вместо полноценного токового драйвера;
  • большинство ламп имеют высокий ;
  • как правило, в конструкции филаментой лампы отсутствует предохранитель;
  • имеют завышенную рыночную стоимость;
  • в дешевых китайских лампах мощность и реальный срок службы ниже заявленных значений.

Подводя итоги, стоит сказать, что пока у филаментных светодиодных ламп минусов больше, чем плюсов. Однако технология конкурентно способная, благодаря принципиально новому подходу конструкции и охлаждении LED-кристаллов. Стоит надеяться, что китайские производители улучшат качество драйвера, надёжность которого исключит сразу несколько недостатков.

Практическое использование филаментных светодиодных стержней в лампах с цоколем Е27, Е14 – это первый шаг на пути их развития. Существует множество проектов с использованием других распространённых цоколей, возможно поэтому вскоре мы расскажем о их новых модификациях и сфере применения.

Читайте так же