Оформление примеров на доказательство тригонометрических тождеств. Основные тригонометрические тождества: их формулировки и вывод

Примеры тождеств:

\(2(x+5)=2x+10\);
\(a^2-b^2=(a+b)(a-b)\);
\(1-\sin^2⁡x=\cos^2⁡x\).

А вот выражение \(\frac{x^2}{x}=x\) является тождеством только при условии \(x≠0\) (иначе левая часть не существует).

Как доказывать тождество?

Рецепт до одури прост:

Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».

Например,

\(5=5\);
\(\sin^2⁡x=\sin^2⁡x\);
\(\cos⁡x-4=\cos⁡x-4\).

Для того, чтоб это сделать можно:

  1. Преобразовывать только правую или только левую часть.
  2. Преобразовывать обе части одновременно.
  3. Использовать любые допустимые математические преобразования (например, приводить подобные; раскрывать скобки; переносить слагаемые из одной части в другую, меняя знак; умножать или делить левую и правую часть на одно и то же число или выражение, не равное нулю и т.д.).
  4. Использовать любые математические формулы.

Именно четвертый пункт при доказательстве тождеств используется чаще всего, поэтому все нужно знать, помнить и уметь использовать.

Пример . Доказать тригонометрическое тождество \(\sin⁡2x=2\sin⁡x\cdot \cos{x}\)
Решение :


Пример . Доказать, что выражение \(\frac {\cos^2{t}}{1-\sin⁡{t}}\) \(-\sin{⁡t}=1\) является тождеством.
Решение :

Пример . Доказать тригонометрическое тождество \(1-tg^2 t=\)\(\frac{\cos⁡2t}{\cos^2⁡t}\)
Решение :

\(1-tg^2 t=\)\(\frac{\cos⁡2t}{\cos^2⁡t}\)

Здесь будем преобразовывать только правую часть, стремясь свести ее к левой. Левую же оставляем неизменной. Вспоминаем .

\(1-tg^2 t=\)

Теперь сделаем почленное деление в дроби (т.е. применим в обратную сторону): \(\frac{a+c}{b}\) \(=\) \(\frac{a}{b}\) \(+\)\(\frac{c}{b}\)

\(1-tg^2 t=\)\(\frac{\cos^2⁡t}{\cos^2⁡t}\) \(-\)\(\frac{\sin^2⁡t}{\cos^2⁡t}\)

Первую дробь правой части сократим, а ко второй применим : \(\frac{a^n}{b^n}\) \(=\)\((\frac{a}{b})^n\) .

\(1-tg^2 t=1-\)\((\frac{\sin⁡t}{\cos⁡t})^2\)

Ну, а синус деленный на косинус равен того же угла:

\(\frac{\sin⁡x}{\cos⁡x}\) \(=tg x\)

\(1-tg^2 t=1-tg^2 t\)

Пример . Доказать тригонометрическое тождество \(=ctg(π+t)-1\)
Решение :

\(\frac{\cos⁡2t}{\sin⁡t\cdot\cos⁡t+\sin^2⁡t}\) \(=ctg(π+t)-1\)

Здесь будем преобразовывать обе части:
- в левой: преобразуем \(\cos⁡2t\) по формуле двойного угла;
- а в правой \(ctg(π+t)\) по .

\(\frac{\cos^2⁡t-\sin^2⁡t}{\sin⁡t\cdot\cos⁡t+\sin^2⁡t}\) \(=ctg\:t-1\)

Теперь работаем только с левой частью.
В числителе воспользуемся , в знаменателе за скобку синус.

\(\frac{(\cos⁡t-\sin{t})(\cos⁡t+\sin{t})}{\sin⁡t(\cos⁡t+\sin⁡{t})}\) \(=ctg\:t-1\)

Сократим дробь на \(\cos{⁡t}+\sin{⁡t}\).

\(\frac{\cos⁡t-\sin{t}}{\sin⁡t}\) \(=ctg\:t-1\)

Почленно разделим дробь, превратив ее в две отдельные дроби.

\(\frac{\cos⁡t}{\sin{t}}-\frac{\sin{t}}{\sin{t}}\) \(=ctg\:t-1\)

Первая дробь это , а вторая равна единице.

\(ctg\:t-1=ctg\:t-1\)

Левая часть равна правой, тождество доказано.

Как видите, все довольно несложно, но надо знать все формулы и свойства.

Как доказать основное тригонометрическое тождество

Два простых способа вывести формулу \(\sin^2x+\cos^2x=1\). Нужно знать только теорему Пифагора и определение синуса и косинуса.

Ответы на часто задаваемые вопросы:

Вопрос: Как определить, что в тождестве надо преобразовывать – левую часть, правую или обе вместе?
Ответ: Нет никакой разницы – в любом случае вы получите один и тот же результат. Например, в третьем примере мы легко могли бы получить из левой части \(1-tg^2 t\) правую \(\frac{cos⁡2t}{cos^2⁡t}\) (попробуйте сделать это сами). Или преобразовывать обе, с тем чтоб они «встретились посередине», где-то в районе \(\frac{\cos^2⁡t-\sin^2⁡t}{\cos^2⁡t}\) \(=\)\(\frac{\cos^2⁡t-\sin^2⁡t}{\cos^2⁡t}\) . Поэтому вы можете доказывать любым удобным вам способом. Какую «тропинку» видите – по той и идите. Главное только – преобразовывайте «законно», то есть понимайте на основании какого свойства, правила или формулы вы делаете очередное преобразование.

Основные тригонометрические тождества.

secα читают: «секанс альфа». Это число, обратное косинусу альфа.

соsecα читают: «косеканс альфа». Это число, обратное синусу альфа.

Примеры. Упростить выражение:

а) 1 – sin 2 α; б) cos 2 α – 1; в) (1 – cosα)(1+cosα); г) sin 2 αcosα – cosα; д) sin 2 α+1+cos 2 α;

е) sin 4 α+2sin 2 αcos 2 α+cos 4 α; ж) tg 2 α – sin 2 αtg 2 α; з) ctg 2 αcos 2 α – ctg 2 α; и) cos 2 α+tg 2 αcos 2 α.

а) 1 – sin 2 α = cos 2 α по формуле 1) ;

б) cos 2 α – 1 =- (1 – cos 2 α) = -sin 2 α также применили формулу 1) ;

в) (1 – cosα)(1+cosα) = 1 – cos 2 α = sin 2 α. Вначале мы применили формулу разности квадратов двух выражений: (a – b)(a+b) = a 2 – b 2 , а затем формулу 1) ;

г) sin 2 αcosα – cosα. Вынесем общий множитель за скобки.

sin 2 αcosα – cosα = cosα(sin 2 α – 1) = -cosα(1 – sin 2 α) = -cosα cos 2 α = -cos 3 α. Вы, конечно, уже заметили, что так как 1 – sin 2 α = cos 2 α, то sin 2 α – 1 = -cos 2 α. Точно так же, если 1 – cos 2 α = sin 2 α, то cos 2 α – 1 = -sin 2 α.

д ) sin 2 α+1+cos 2 α = (sin 2 α+cos 2 α)+1 = 1+1 = 2;

е ) sin 4 α+2sin 2 αcos 2 α+cos 4 α. Имеем: квадрат выражения sin 2 α плюс удвоенное произведение sin 2 α на cos 2 α и плюс квадрат второго выражения cos 2 α. Применим формулу квадрата суммы двух выражений: a 2 +2ab+b 2 =(a+b) 2 . Далее применим формулу 1) . Получим: sin 4 α+2sin 2 αcos 2 α+cos 4 α = (sin 2 α+cos 2 α) 2 = 1 2 = 1;

ж) tg 2 α – sin 2 αtg 2 α = tg 2 α(1 – sin 2 α) = tg 2 α cos 2 α = sin 2 α. Применили формулу 1) , а затем формулу 2) .

Запомните: tg α ∙ cos α = sin α.

Аналогично, используя формулу 3) можно получить: ctg α ∙ sin α = cos α. Запомнить!

з) ctg 2 αcos 2 α – ctg 2 α = ctg 2 α(cos 2 α – 1) = ctg 2 α (-sin 2 α) = -cos 2 α.

и) cos 2 α+tg 2 αcos 2 α = cos 2 α(1+tg 2 α) = 1. Мы вначале вынесли общий множитель за скобки, а содержимое скобок упростили по формуле 7).

Преобразовать выражение:

Мы применили формулу 7) и получили произведение суммы двух выражений на неполный квадрат разности этих выражений – формулу суммы кубов двух выражений:

a 3 + b 3 = (a + b)(a 2 – ab + b 2). У нас а = 1, b = tg 2 α.

Упростить:

Страница 1 из 1 1

Класс: 10

“Математическая истина, независимо
от того, в Париже или в Тулузе, одна и та же”
Б. Паскаль

Тип урока: Урок формирования умений и навыков.

Урок общеметодологической направленности.

Деятельностная цель: формирование способности учащихся к новому способу действия, связанному с построением структуры изученных понятий и алгоритмов.

Цели урока:

  • дидактическая: научить применять полученные ранее знания, умения и навыки для упрощения выражений и доказательства тригонометрических тождеств.
  • развивающая:
  • развивать логическое мышление, память, познавательный интерес, продолжать формирование математической речи, вырабатывать умение анализировать и сравнивать.
  • воспитательная:
  • показать, что математические понятия не изолированы друг от друга, а представляют определенную систему знаний, все звенья которой находятся во взаимной связи, продолжить формирование эстетических навыков при оформлении записей, навыков контроля и самоконтроля.

Для успешного решения задач по тригонометрии необходимо уверенное владение многочисленными формулами. Тригонометрические формулы надо помнить. Но это не значит, что их надо заучивать все наизусть, главное запоминать не сами формулы, а алгоритмы их вывода. Любую тригонометрическую формулу можно довольно быстро получить, если твердо знать определения и основные свойства функций sinα, cosα, tgα, ctgα,соотношение sin 2 α+ cos 2 α =1 и т.д.

Разучивание тригонометрических формул в школе не для того чтобы вы всю оставшуюся жизнь вы вычисляли синусы и косинусы, а для того чтобы ваш мозг приобрел способность работать. (Презентация . Слайд 2 )

Дороги не те знания, которые отлагаются в мозгу, как жир; дороги те, которые превращаются в умственные мышцы” писал Г. Спесер, английский философ и социолог.

Будем накачивать и тренировать умственные мышцы. Поэтому повторим основные тригонометрические формулы. (Слайд 3)

(Слайд 4)

(Слайд 5)

Мы повторили формулы, теперь можем помочь двум друзьям, назовём их Пётр и Степан.

После преобразования некоторого очень сложного тригонометрического выражения А они получили следующие выражения: (Слайд 6)

(Слайд 7) Каждый отстаивал свой ответ. Как узнать кто из них прав? Обратились к Артёму, который дружит с Петром “Платон мне друг, но истина дороже”: сказал Артём и предложил несколько способов разрешения их спора. А какие вы можете предложить способы установить истину? Предлагают способы установления истины (Слайд 8):

1) Преобразовать, упростить А П и А с, т.е. привели к одному выражению

2) А П – А с = 0

Т. е. оба были правы. И их ответы равны при всех допустимых значениях α и β .

Как называются такие выражения? Тождествами. Какие тождества вы знаете?

То ждество , основное понятие логики, философии и математики; используется в языках научной теорий для формулировки определяющих соотношений, законов и теорем.

В математике тождество – это равенство, которое справедливо для любых допустимых значений входящих в него переменных. (Слайд 9)

Тема урока: “Тригонометрические тождества”.

Цели: найти способы.

Двое работают у доски.

№ 2. Доказать тождество.

Тождество доказано.

№ 3. Доказать тождество:

1 способ:

2 способ:

Способы доказательства тождеств.

  1. правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным.
  2. Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным.
  3. Из правой части тождества вычитаем левую часть.
  4. Из левой части тождества вычитают правую часть.
  5. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Для чего необходимо уметь доказывать тригонометрические тождества? В ЕГЭ задание С1 тригонометрические уравнения!

Решается № 87 (п. 3)

Итак, подведем итоги урока. (Слайд 10)

Какова была тема урока?

Какие способы доказательства тождеств вам известны?

1. Преобразование левой части к правой или правой к левой.
2. Преобразование левой и правой части к одному и тому же выражению.
3. Составление разности левой и правой частей и доказательство равенства этой разности нулю.

Какие формулы при этом используются?

1. Формулы сокращенного умножения.
2. 6 тригонометрических тождеств.

Рефлексия урока. (Слайд 11)

Продолжите фразы:

– сегодня на уроке я узнал …
– сегодня на уроке я научился…
– сегодня на уроке я повторил…
– сегодня на уроке я познакомился…
– сегодня на уроке мне понравилось…

Домашнее задание. Глава VIII; §6; № 78(четные); № 80(2; 4); № 87(2; 4). (Слайд 12)

Творческое задание: Подготовить презентацию о знаменитых тождествах математики. (Например тождество Эйлера.) (Слайд 13)


В этой статье мы всесторонне рассмотрим . Основные тригонометрические тождества представляют собой равенства, устанавливающие связь между синусом, косинусом, тангенсом и котангенсом одного угла, и позволяют находить любую из этих тригонометрических функций через известную другую.

Сразу перечислим основные тригонометрические тождества, которые разберем в этой статье. Запишем их в таблицу, а ниже дадим вывод этих формул и приведем необходимые пояснения.

Навигация по странице.

Связь между синусом и косинусом одного угла

Иногда говорят не об основных тригонометрических тождествах, перечисленных в таблице выше, а об одном единственном основном тригонометрическом тождестве вида . Объяснение этому факту достаточно простое: равенства получаются из основного тригонометрического тождества после деления обеих его частей на и соответственно, а равенства и следуют из определений синуса, косинуса, тангенса и котангенса . Подробнее об этом поговорим в следующих пунктах.

То есть, особый интерес представляет именно равенство , которому и дали название основного тригонометрического тождества.

Прежде чем доказать основное тригонометрическое тождество, дадим его формулировку: сумма квадратов синуса и косинуса одного угла тождественно равна единице. Теперь докажем его.

Основное тригонометрическое тождество очень часто используется при преобразовании тригонометрических выражений . Оно позволяет сумму квадратов синуса и косинуса одного угла заменять единицей. Не менее часто основное тригонометрическое тождество используется и в обратном порядке: единица заменяется суммой квадратов синуса и косинуса какого-либо угла.

Тангенс и котангенс через синус и косинус

Тождества, связывающие тангенс и котангенс с синусом и косинусом одного угла вида и сразу следуют из определений синуса, косинуса, тангенса и котангенса. Действительно, по определению синус есть ордината y, косинус есть абсцисса x, тангенс есть отношение ординаты к абсциссе, то есть, , а котангенс есть отношение абсциссы к ординате, то есть, .

Благодаря такой очевидности тождеств и часто определения тангенса и котангенса дают не через отношение абсциссы и ординаты, а через отношение синуса и косинуса. Так тангенсом угла называют отношение синуса к косинусу этого угла, а котангенсом – отношение косинуса к синусу.

В заключение этого пункта следует отметить, что тождества и имеют место для всех таких углов , при которых входящие в них тригонометрические функции имеют смысл. Так формула справедлива для любых , отличных от (иначе в знаменателе будет нуль, а деление на нуль мы не определяли), а формула - для всех , отличных от , где z - любое .

Связь между тангенсом и котангенсом

Еще более очевидным тригонометрическим тождеством, чем два предыдущих, является тождество, связывающее тангенс и котангенс одного угла вида . Понятно, что оно имеет место для любых углов , отличных от , в противном случае либо тангенс, либо котангенс не определены.

Доказательство формулы очень просто. По определению и , откуда . Можно было доказательство провести и немного иначе. Так как и , то .

Итак, тангенс и котангенс одного угла, при котором они имеют смысл, есть .