Основные понятия теории вероятностей классификация событий. Учебник по теории вероятностей

вероятность событие комбинаторика статистика

Теория вероятностей - это раздел математики, изучающий модели случайных явлений. Случайными явлениями называются явления с неопределенным исходом, происходящие при неоднократном воспроизведении определенного комплекса условий. Становление и развитие теории вероятностей связано с именами таких великих ученых, как: Кардано, Паскаль, Ферма, Бернулли, Гаусса, Чебышева, Калмогорова и многих других. Закономерности случайных явлений впервые были обнаружены в16 - 17 вв. на примере азартных игр, подобных игре в кости. Очень давно известны так же закономерности рождения и смерти. Например, известно, что вероятность новорожденному быть мальчиком? 0,515. В 19-20 вв. было открыто большое число закономерностей в физике, химии, биологии и т. д. В настоящее время методы теории вероятностей широко применяются в различных отраслях естествознания и техники: в теории надежности, теории массового обслуживания, в теоретической физике, геодезии, астрономии, теории стрельбы, теории ошибок наблюдений, теории автоматического управления, общей теории связи и во многих других теоретических и прикладных науках. Теория вероятностей служит также для обоснования математической и прикладной статистики, которая в свою очередь используется при планировании и организации производства, при анализе технологических процессов, предупредительном и приемочном контроле качества продукции и для многих других целей. В последние годы методы теории вероятностей все шире и шире проникают в различные области науки и техники, способствуя их прогрессу.

Испытание. Событие. Классификация событий

Испытание - это многократное воспроизведение одного и того же комплекса условий, при котором производится наблюдение. Качественный результат испытания - событие. Пример 1: В урне имеются цветные шары. Из урны на удачу берут один шар. Испытание - извлечение шара из урны; Событие - появление шара определенного цвета. О. 2: Множество взаимоисключающих исходов одного испытания называется множеством элементарных событий или элементарных исходов. Пример 2: Игральная кость подбрасывается один раз. Испытание - подбрасывание кости; Событие - выпадение определенного числа очков. Множество элементарных исходов - {1,2,3,4,5,6}. События обозначаются заглавными буквами латинского алфавита: А 1, А 2 ,…,А,В,С,… Наблюдаемые события (явления) можно подразделить на следующие три вида: достоверные, невозможные, случайные. О. 3: Событие называется достоверным, если в результате испытания оно обязательно произойдет. О. 4: Событие называется невозможным, если в результате испытания оно никогда не произойдет. О. 5: Событие называется случайным, если в результате испытания оно может либо произойти, либо не произойти. Пример 3: Испытание - мяч подбрасывается вверх. Событие A ={мяч упадет} - достоверное; Событие B={мяч зависнет в воздухе} - невозможное; Событие C={мяч упадет на голову бросавшему} - случайное. Случайные события (явления) можно подразделить на следующие виды: совместные, несовместные, противоположные, равновозможные. О. 6: Два события называются совместными, если при одном испытании, появление одного из них не исключает появление другого. О. 7: Два события называются несовместными, если при одном испытании, появление одного из них исключает появление другого. Пример 4: Монета подбрасывается два раза. Событие A - {Первый раз выпал герб}; Событие B - {Второй раз выпал герб}; Событие C - {Первый раз выпал орел}. События A и B - совместные, A и C - несовместные. О. 8: Несколько событий образуют полную группу в данном испытании, если они попарно несовместны и в результате испытания одно из этих событий обязательно появится. Пример 5: Мальчик бросает монетку в игральный автомат. Событие A ={мальчик выиграет}; Событие B={мальчик не выиграет}; A и B - образуют полную группу событий. О. 9: Два несовместных события, образующих полную группу называются противоположными. Событие противоположное событию A обозначается. Пример 6. Делается один выстрел по мишени. Событие A - попадание; Событие - промах.

    Случайные события и их классификация

    Классическое определение вероятности

    Непосредственное вычисление вероятностей

§ 1. Случайные события и их классификация

1. Втеории вероятностей случайным событием на­зывают то, что при наличии некоторого комплекса условий S может произойти или не произойти. Например, при бросании монеты может выпасть герб или решка, поэтому события «при бросании монеты выпал герб» и «при бросании монеты выпала решка» - случайные события.

При бросании монеты и ее полете на последнюю воздействуют - многие случайные факторы (сила, с которой брошена монета, форма монеты и др.). Поэтому при каждом отдельном бросании монеты предсказать появление герба или решки невозможно, впрочем, в теории вероятностей такой задачи и не ставится. Однако если бросить монету большое число раз, например 10 000 раз или больше, при одном и том же комплексе условий S , то отношение числа т появлений герба к общему числу п, про­веденных опытов с монетой, будет близко к .

Приведем еще один пример: по статистическим данным на каждую 1000 новорожденных приходится 515, т. е. 51,5%, маль­чиков и 485, т. е. 48,5%, девочек с незначительным отклонением в ту или другую сторону от упомянутых чисел. Эта закономер­ность имеет место для всех народов независимо от экономичес­ких, географических и других условий, но наблюдается она лишь тогда, когда события (рождаемость) носят массовый характер.

Теория вероятностей есть раздел математики, изучающий закономерности массовых однородных случайных событий.

Математическая статистика есть также раздел математики, посвященный математическим методам систематизации, обра­ботки и использования статистических данных для научных и практических выводов.

Математическая статистика пользуется методами различных областей математики и в первую очередь теории вероятностей.

Зарождение и развитие теории вероятностей и математиче­ской статистики, как и всякой другой науки, тесно связано с жиз­ненной потребностью людей, с развитием производительных сил общества. Так, например, организация страховых обществ, пе­репись населения, решение задач, возникавших в азартных играх, методы обработки различных результатов наблюдений, в част­ности, оценка случайных ошибок и многие другие вопросы, реше­ние которых способствовало появлению и развитию этих двух ветвей математики.

Теория вероятностей благодаря трудам Гюйгенса (1629- 1695), Паскаля (1623-1662), П. Ферма (1601-1665) и в особен­ности Я. Бернулли (1654-1705) становится наукой уже в XVII веке.

Крупнейшими представителями этой науки в XVIII и в первой половине XIX века были математики П. Лаплас (1749-1827), К. Гаусс (1777-1855) и С. Пуассон (1781-1840). Работы этих ученых дали возможность применять в теории вероятностей науч­но обоснованные методы.

Особенно быстро теория вероятностей развивалась во второй половине XIX и в XX веке в связи с применением статистических методов исследования различных вопросов и стала теоретичес­кой базой математической статистики. Этот период был ознаме­нован фундаментальными открытиями в области теории вероят­ностей русскими математиками Петербургской математической школы П. Л. Чебышевым (1821-1894) (создателем этой школы) и его знаменитыми учениками А. М. Ляпуновым (1857-1918) и А. А. Марковым (1856-1922).

Современная математическая школа занимает ведущее место во многих отраслях современной математики, в частности, в области теории вероятностей и математической статистики.

Строгое логическое обоснование теории вероятностей произо­шло в XX веке и связано с именами советских математиков, прежде всего с именем А. Н. Колмогорова. Крупнейшими представителями этой области науки являются математики С. Н. Бернштейн, Б. В. Гнеденко, В. И. Романовский, Е. Е. Слуц­кий, Н. В. Смирнов, А. Я. Хинчин, Б. С. Ястремский и др.

2. Подобно тому, как в геометрии первыми понятиями явля­ются точка и прямая, в теории вероятностей первыми понятиями служат событие и вероятность.

Событием называется явление, о котором имеет смысл говорить, что оно произошло или не произошло (происходит или не происходит, произойдет или не произойдет).

События можно подразделить на три вида: достоверные, не­возможные и случайные .

Событие называется достоверны м, если оно при осуще­ствлении данного комплекса условий S обязательно произойдет. Например, если в урне только белые шары, то извлечение из урны белого шара - событие достоверное. Приведем другой пример. В очередном тираже 3%-ного государственного займа событие, что какая-нибудь облигация этого займа выиграет, достоверно.В дальнейшем вместо того, чтобы говорить «при осуществле­нии данного комплекса условий S», будем говорить короче: «при испытании» или «при опыте».

В первом примере, приведенном выше, извлечение из урны шара есть испытание, а появление белого шара - событие.

Во втором примере проведение очередного тиража 3%-ного государственного займа есть испытание (опыт), выигрыш какой-нибудь облигации этого займа - событие.

Событие называется невозможным , если оно при испы­тании не может произойти. Например, в урне содержатся только белые шары. Извлечение из урны черного шара - событие не­возможное.

Событие называется случайным , если оно при испытании может произойти или не произойти. Например, выпадение осад­ков в Минске 1 мая 1980 г.- событие случайное.

Случайные события принято обозначать большими буквами латинского алфавита: А, В, С, ... , достоверные буквой U и не­возможные буквой V . Дадим еще несколько определений.

События
называются совместными (сов­местимыми если появление одно из них не исключает возмож­ности появления других. Например, пусть производится выстрел по цели из каждого орудия, число которых равно трем. Ясно, что не исключается возможность попадания в цель из всех трех ору­дий. Следовательно, эти три события совместные.

Событиями,
называются нес овместимыми (несовместимыми), если наступление одного из них исключает возможность появления любого другого. Например, при бросании монеты выпадение герба исключает возможность появления решки.

События
называются единственно воз­можным и, если при испытании обязательно наступит хотя бы одно из них.

Пример 1. Пусть в урне содержатся белые, черные и красные шары. Извлекаем из урны шар, он может оказаться белым (событие А), черным (событие В) или красным (событие С). По определению эти три события А, В, С - единственно возможные.

События
единственно возможные и несовме­стные называются полной системой событий.

Пример 2. Кубик, на гранях которого обозначено число очков от 1 до 6, называется игральной костью. Предполагается, что кубик сделан из однород­ного материала.

При бросании игральной кости может выпасть одно, два, три, четыре, пять или шесть очков. Обозначим упомянутые события соответственно через,
. Эти события единственно возможные и несовместные, следова­тельно, они образуют полную систему событий.

Два единственно возможных и несовместных события назы­ваются противоположными событиями

Если А - некоторое событие, то противоположное ему собы­тие обозначают .

Пример 3. При бросании монеты может выпасть герб или решка. Эти со­бытия противоположные.

Противоположными событиями также будут: «сдать» и «не сдать» экзамен, «выиграть» и «не выиграть» по лотерейному билету, «попасть» и «не попасть» в цель при выстреле из ружья.

Если при каждом осуществлении комплекса условий S, при котором происходит событие А, происходит и событие В, то го­ворят, что А влечет за собой В, и этот факт обозначают символом AB или B
А .

Если имеет место одновременно AB или B
А , то события А и В называются равносильными. В этом случае пишут А=В.

Таким образом, равносильные события А и В при каждом испытании оба наступают или оба не наступают.

Пример 4. Игральную кость бросили один раз. Пусть выпало шесть очков (событие А). Обозначим через В четное число, через С - число очков, деля­щееся на 3. Очевидно, что AB AС .

Пример 5. В урне один белый шар и три черных. Все шары перенумеро­ваны. Пусть белый шар имеет номер 1. При извлечении шара из урны событие появления белого шара обозначим буквой А, а событие появления шара 1 обоз­начим буквой В. Очевидно, что AB и В А , т. е. события А и В равно­сильны и поэтому можно написать А =В.

Опытом , или испытанием , называют всякое осуществление определенного комплекса условий или действий, при которых происходит соответствующее явление. Возможный результат опыта называют событием . Например, опытом является подбрасывание монеты, а событиями "герб", "цифра на верхней ее стороне" (когда монета упадет). Опытами являются стрельба по мишени, извлечение шара из ящика и т.п. События будем обозначать заглавными буквами латинского алфавита А, В, С, ...

Событие называется достоверным в данном опыте, если оно обязательно произойдет в этом опыте. Например, если в ящике находятся только голубые шары, то событие "из ящика извлечен голубой шар" является достоверным (в ящике нет шаров другого цвета).

Событие называется невозможным в данном опыте, если оно не может произойти в этом опыте. Так, если в ящике находятся только красные шары, то событие "из ящика извлечен голубой шар" является невозможным (таких шаров в ящике нет).

Событие называется случайным в данном опыте, если оно может произойти, а может и не произойти в этом опыте. Например, если в ящике находятся n голубых и m красных шаров, одинаковы по размеру и весу, то событие "из урны извлечен голубой шар" является случайным (оно может произойти, а может и не произойти, поскольку в урне имеются не только голубые, но и красные шары). Случайными событиями являются "герб" и "цифра на верхней стороне монеты при ее подбрасывании", "попадание и промах при стрельбе по мишени", "выигрыш по билету лотереи" и т.п.
З а м е ч а н и е. Приведенные примеры свидетельствуют о том, что одно и то же событие в некотором опыте может быть достоверным, в другом - невозможным, в третьем - случайным. Говоря о достоверности, невозможности, случайности события, имеют в виду его достоверность, невозможность, случайность по отношению к конкретному опыту, то есть к наличию определенного комплекса условий или действий.

Два события называются совместными в данном опыте, если появление одного из них не исключает, появление другого в этом опыте. Так, при подбрасывании двух симметричных монет, события А - "герб на верхней стороне первой монеты" и В - "цифра на верхней стороне второй монеты" являются совместными.

Два события называются несовместными , если они не могут произойти вместе при одном и том же испытании. Например, несовместными являются попадание и промах при одном выстреле. Несколько событий называются несовместными, если они попарно- несовместны.

Два события называются противоположными , если появление одного из них равносильно непоявлению другого. Так, противоположными являются события "герб" и "цифра" при одном подбрасывании симметричной монеты. Если одно из противоположных событий обозначено буквой А, то другое обозначают . Например, если А - "попадание", то - "промах" при одном выстреле по мишени.

Множество событий A 1 , А 2 , ... , А n называют полной группой событий , если они попарно-несовместны; появление одного и только одного из них является достоверным событием. Поясним понятие полной группы событий на следующем примере. Рассмотрим события, появляющиеся при подбрасывании игрального кубика (то есть кубика, на гранях которого записаны цифры 1, 2, 3, 4, 5, 6 или изображены знаки, соответствующие этим цифрам). Когда кубик упадет, то верхней гранью окажется грань с одной из этих цифр. Событие: "верхней гранью оказалась грань с цифрой k" обозначим через A k (k = 1, 2, 3, 4, 5, 6). События А 1 , А 2 , А 3 , А 4 , А 5 , А 6 образуют полную группу: они попарно-несовместны; появление одного и только одного из них является достоверным событием (когда кубик упадет, то только одна из граней окажется верхней, на ней написана только одна из цифр от 1 до 6).

События считают равновозможными , если нет оснований полагать, что одно событие является более возможным, чем другие. Например, при подбрасывании монеты событие А (появление цифры) и событие В (появление герба) равновозможны, так как предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не влияет на то, какая сторона монеты (герб или цифра) окажется верхней. При подбрасывании игрального кубика события A 1 , А 2 , А 3 , А 4 , А 5 , А 6 являются равновозможными, поскольку предполагается, что кубик изготовлен из однородного материала, имеет правильную форму и наличие цифр (или очков) на гранях не влияет на то, какая из шести граней окажется верхней. Каждое событие, которое может наступить в итоге опыта, называется элементарным исходом (элементарным событием, или шансом).

Например, события A 1 , А 2 , А 3 , А 4 , А 5 , А 6 - элементарные исходы при подбрасывании кубика. Элементарные исходы, при которых данное событие наступает, называются благоприятствующими этому событию, или благоприятными шансами. Так, при подбрасывании игрального кубика элементарные исходы А 2 , А 4 , А 6 являются благоприятствующими событию "выпало четное число очков".

Пример 1.

Подбрасываются два игральных кубика, подсчитываются суммы выпавших очков (суммы числа очков на верхних гранях обоих кубиков). Сумма выпавших очков на двух кубиках может меняться от 2 до 12. Записать полную группу событий в этом опыте.

Решение.

Полную группу событий образуют равновозможные элементарные исходы (k ; m ), k , m = 1, 2, 3, 4, 5, 6, представленные в таблице. Элементарный исход (k ; m ) означает, что на первом кубике выпало k очков, на втором m очков (k , m = 1,2,3,4,5,6). Например, (3; 4) - на первом кубике 3 очка, на втором - 4 очка.

(1;1) (2;1) (3;1) (4;1) (5;1) (6;1)
(1;2) (2;2) (3;2) (4;2) (5;2) (6;2)
(1;3) (2;3) (3;3) (4;3) (5;3) (6;3)
(1;4) (2;4) (3;4) (4;4) (5;4) (6;4)
(1;5) (2;5) (3;5) (4;5) (5;5) (6;5)
(1;6) (2;6) (3;6) (4;6) (5;6) (6;6)

Пример 2.

Сколько элементарных исходов благоприятствует событию "на обоих кубиках выпало одинаковое число очков" при подбрасывании двух игральных кубиков?

Решение.

Этому событию благоприятствуют 6 элементарных исходов (смотрите таблицу из примера 1): (1;1), (2;2), (3;3), (4;4), (5;5), (6;6).

Пример 3.

Подбрасывается два игральных кубика. Какому событию благоприятствует больше элементарных исходов: "сумма выпавших очков равна 7", "сумма выпавших очков равна 8"?

Решение.

Событию "сумма выпавших очков равна 7" благоприятствуют 6 исходов (см. табл. примера 1): (1;6), (2;5), (3;4), (4;3), (5;2), (6;1). Событию "сумма выпавших очков равна 8" благоприятствуют 5 исходов: (2;6), (3;5), (4;4), (5;3), (6;2). Следовательно, первому событию благоприятствует больше элементарных исходов.

Пример 4.

Подбрасываются три игральных кубика, подсчитываются суммы очков, выпавших на них. Сколькими способами можно получить в сумме 5 очков, 6 очков?

Решение.

Получить в сумме 5 очков можно шестью способами: (1; 1; 3), (1; 3; 1), (3; 1; 1), (1; 2; 2), (2; 1; 2), (2; 2; 1). Получить в сумме 6 очков можно десятью способами: (1; 1; 4), (1; 4; 1), (4; 1; 1), (1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1), (3; 1; 2), (3; 2; 1), (2; 2; 2).
З а м е ч а н и е. Запись (3; 2; 1) означает, что на первом кубике выпало 3 очка, на втором - 2 очка, на третьем - 1 очко.

Задачи

1. Являются ли несовместными следующие события:

б) опыт - два выстрела по мишени; события: А - "хотя бы одно попадание"; В - "хотя бы один промах".

2. Являются ли равновозможными следующие события:
а) опыт - подбрасывание симметричной монеты; события: А -"появление герба", В - "появление цифры";
б) опыт - подбрасывание погнутой монеты; события: А - "появление герба", В - "появление цифры";
в) опыт - выстрел по мишени; события: А - "попадание", В - "промах".

3. Образуют ли полную группу событий следующие события:
а) опыт - подбрасывание симметричной монеты; события: А - "герб", В - "цифра";
б) опыт - подбрасывание двух симметричных монет; события: А - "два герба", В - "две цифры".

4. Опыт - подбрасывание двух игральных кубиков. Сколько элементарных исходов благоприятствуют событию - выпало очков: 2, 3, 4, 5, 6, 7,8,9,10,11,12?

5. Опыт - подбрасывание трех игральных кубиков. Сколько всего элементарных исходов? Сколько элементарных исходов благоприятствуют событию - на трех кубиках выпало очков: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12? Каково наибольшее значение суммы выпавших очков?

Ответы

1. а) да; б) нет. 2 . а) да; б) нет; в) в общем случае нет. 3 . а) да; б) нет. 4 . 1,2,3,4,5,6,5,4, 3, 2, 1. 5 . n=216; 1, 3, 6, 10, 15, 21, 25, 27, 27, 25; 18.

Вопросы

1. Что называют опытом, или испытанием?
2. Что называют событием?
3. Какое событие называют достоверным в данном опыте?
4. Какое событие называют невозможным в данном опыте?
5. Какое событие называют случайным в данном опыте?
6. Какие события называют совместными в данном опыте?
7. Какие события называют несовместными в данном опыте?
8. Какие события называют противоположными?
9. Какие события считают равно возможными?
10. Что называют полной группой событий?
11. Что называют элементарным исходом?
12. Какие элементарные исходы называют благоприятствующими данному событию?
13. Что представляет собой полная группа событий при подбрасывании одной монеты?
14. Что представляет собой полная группа событий при подбрасывании двух монет?

Лекция 1

ВВЕДЕНИЕ

ЧАСТЬ 1

ЦЕЛЬ ЛЕКЦИИ: определить предмет курса; ввести понятия опыта, случайного явления, случайного события, а также вероятности и частоты события; дать классическое определение вероятности и провести классификацию схем выбора при непосредственном подсчете вероятности.

Теория вероятностей – математическая наука, изучающая закономерности в случайных явлениях.

Под опытом понимается некоторая воспроизводимая совокупность условий, в которой наблюдается то или иное явление. Опыт может представлять как одно испытание, так и серию испытаний.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.

Примеры случайных явлений: взвешивание тела на аналитических весах, подбрасывание монеты или игрального кубика.

В данных примерах условия опыта неизменны, но результаты опыта варьируются. Эти вариации связаны с воздействием второстепенных факторов, влияющих на исход опыта, но не оговоренных в числе основных условий. На практике существует большой класс задач, в которых интересующий исход опыта зависит от столь большого числа факторов, что учесть их в полном объеме невозможно.

При наблюдении совокупности однородных случайных явлений часто обнаруживается закономерность, получившая название устойчивости частот (бросание монеты при многократном повторении дает число выпадения герба, равное 1/2, бросание игрального кубика дает число выпадений грани с цифрой 6, равное 1/6; процент брака в отлаженном технологическом процессе). Проявление такого рода закономерности при массовом воспроизведении опыта позволяет сделать вывод о том, что отдельные индивидуальности случайных явлений тонут в суммарном результате опытов.

Таким образом, базой для применения вероятностных (статистических) методов является свойство устойчивости частот в массовых случайных явлениях. Методы теории вероятностей не позволяют предсказать исход отдельного опыта, но дают возможность предсказать суммарный результат (в среднем) большого числа опытов. К примеру, случайным является движение молекул газа в сосуде, и не представляется возможным предсказать траекторию движения и скорость отдельной молекулы, однако давление газа на стенки сосуда (при большом числе молекул) является неслучайной величиной.

Зарождение теории вероятностей связано с исследованиями Паскаля (1623–1662), Ферма (1601–1665), Гюйгенса (1629–1695) в области теории азартных игр, когда было сформулировано понятие вероятности, математического ожидания. Классическое определение вероятности события было введено Якобом Бернулли (1654–1705), им же был сформулирован закон больших чисел. В дальнейшем основы теории вероятностей закладывались работами таких математиков, как Муавр (1667–1754), Лаплас(1749–1827), Гаусс (1777–1855), Пуассон (1781–1840). Большой вклад в развитие теории вероятностей внесла русская школа математики в лице П. Л. Чебышева (1821–1894), А. А. Маркова (1856–1922), А. М. Ляпунова (1857–1918), А. Н. Колмогорова(1903–1987).


Случайное событие

Случайное событие – всякий факт, который в результате опыта со случайным исходом может произойти или не произойти.

Примеры: А – появление герба при подбрасывании монеты; В – появление четной цифры при подбрасывании игрального кубика; С – попадание в мишень при выстреле.

Противоположным событию А называется событие, состоящее в невыполнении события А .

У каждого из событий – разная возможность его появления. В качестве численной меры степени объективной возможности события используется понятие вероятности события . Понятие вероятности события связано с понятием частоты события.

Достоверным называется событие, которое в результате опыта обязательно должно произойти, невозможным называется событие, которое в результате опыта произойти не может. Для достоверного события полагается вероятность, равная 1, для невозможного события – 0. Исходя из этого, диапазон изменения вероятности будет составлять 0 – 1.

Практически невозможным называется событие, вероятность которого не в точности равна 0, но весьма близка к 0. Например: из разрезной азбуки, состоящей из 32 букв, вынимается с возвращением 15 букв. Какова вероятность того, что последовательность этих букв составит фразу "Как молоды мы были"? Данная вероятность составит (1/32) 15 . Событие практически невозможное.

Практически достоверным называется событие, вероятность которого не в точности равна 1, но весьма близка к 1. Такое событие является противоположным практически невозможному. С данными понятиями связывается принцип практической уверенности, который формулируется следующим образом: если вероятность некоторого события А в данном опыте весьма мала, то можно быть практически уверенным, что при однократном проведении опыта событие А не произойдет. Выбор вероятности, которая бы считалась достаточной при определении возможности того или иного прогноза, производится каждый раз из практических соображений с учетом стоимости потерь, вызванных ошибочным прогнозом.

Опыт с конечным числом исходов.

Классическое определение вероятности

В ряде опытов, таких, как подбрасывание монеты, подбрасывание игрального кубика, карточные игры, рулетка, извлечение наудачу определенного числа шаров из урны, возможные исходы обладают определенной симметрией к условиям опыта и одинаково возможны (опыты с конечным числом равновероятных исходов). В частности, при подбрасывании "правильного" кубика ни один из элементарных исходов (появление любой цифры: 1,2,3,4,5,6) нельзя считать более предпочтительным, чем другой.

Для таких опытов представляется возможным непосредственно подсчитать вероятность события. Именно при анализе таких опытов и было сформулировано в XVII в. классическое определение вероятности .

Прежде чем сформулировать классическое определение вероятности, введем ряд определений.

Несколько событий в данном опыте образуют полную группу событий , если в результате опыта непременно должно появиться хотя бы одно из них, например герб, цифра (решка) при бросании монеты; попадание, промах при стрельбе; появление 1,2,3,4,5,6 при бросании игральной кости.

Несколько событий называются несовместными в данном опыте, если исключено их совместное появление (герб и решка при бросании монеты).

Равновозможными событиями называют события, если по условиям симметрии опыта можно считать, что ни одно из этих событий не является объективно более возможным, чем другое (герб или решка при бросании монеты).

Если группа событий обладает всеми тремя свойствами: полноты, равновозможности и несовместности, то такие события называют случаями . Случай называют благоприятным некоторому событию А , если появление этого случая влечет за собой появление данного события. Например, при бросании игральной кости есть три случая, благоприятных событию А , которое состоит в появлении четного числа очков, а именно появлении 2, 4 или 6.

Соответственно опыт, при котором имеет место симметрия равновозможных и исключающих друг друга исходов, получил название схемы случаев (или схемы урн) . Непосредственный подсчет вероятностей в схеме случаев основан на оценке доли благоприятных случаев в их общем числе:

где – число благоприятных случаев событию А , n – общее число случаев.

Так как число благоприятных случаев может изменяться от 0 до n , то вероятность события будет изменяться в пределах 0 – 1. Формула (1.1) называется классической формулой , она используется для непосредственного подсчета вероятностей, когда опыт сводится к схеме случаев.

Непосредственный подсчет вероятностей.

Схема выбора с возвращением

и без возвращения элементов

При определении вероятности события по классической формуле (1.1) для определения общего числа случаев и числа благоприятных случаев часто привлекаются элементы комбинаторики. При этом в каждом опыте важным является способ выбора элементов.

Существуют две схемы выбора: схема выбора без возвращения элементов и схема выбора с возвращением элементов. В первом случае извлеченные m элементов (без разницы, по одному или вместе) не возвращаются в исходную совокупность. Во втором случае на каждом шаге элементы извлекаются по одному, фиксируется выбранный элемент, затем он возвращается, и вся исходная совокупность тщательно перемешивается. Таким образом, во втором случае один и тот же элемент может извлекаться неоднократно.

После осуществления выбора элементы могут быть упорядочены или нет. Итак, в классической схеме существует четыре типа опытов. Рассмотрим, каким образом рассчитываются общее число случаев и число благоприятных случаев в каждой схеме.

Ÿ Схема выбора без возвращения и без упорядочивания порядка следования элементов (схема выбора, приводящая к сочетаниям). Опыт состоит в выборе из исходной совокупности объемом n элементов m элементов без возвращения и без упорядочивания порядка следования элементов. В этом опыте различными исходами будут совокупности m элементов, отличающиеся друг от друга составом элементов. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом сочетаний из п элементов по m :

Свойства числа сочетаний:

2) (свойство симметрии);

3) (рекуррентное соотношение);

4) (следствие биномиальной формулы Ньютона).

Ÿ Схема выбора без возвращения, но с упорядочиванием порядка следования элементов (схема выбора, приводящая к размещениям). Опыт состоит в выборе из исходной совокупности объемом n элементов т элементов без возвращения, но с упорядочиванием порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга как составом элементов, так и порядком их следования. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом размещений из п элементов по т :

При размещения представляют из себя перестановки из п элементов:

Ÿ Схема выбора с возвращением и без упорядочивания порядка следования элементов (схема выбора, приводящая к сочетаниям с повторениями). Опыт состоит в выборе из исходной совокупности объемом п элементов т элементов с возвращением и без упорядочивания порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга составом элементов. При этом отдельные наборы могут содержать повторяющиеся элементы. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом сочетаний с повторениями из п элементов по т :

Ÿ Схема выбора с возвращением и с упорядочиванием порядка следования элементов (схема выбора, приводящая к размещениям с повторениями). Опыт состоит в выборе из исходной совокупности объемом п элементов т элементов с возвращением и с упорядочиванием порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга как составом элементов, так и порядком следования элементов. При этом отдельные наборы могут содержать повторяющиеся элементы. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом размещений с повторениями из п элементов по т :

Частота или статистическая вероятность события

Если опыт не сводится к схеме случаев (например, игральная кость несимметрична, и выпадение определенной грани уже не будет равно 1/6), то для определения вероятности события используют понятие частоты события и связь между вероятностью и частотой.

Частотой события А в опыте, состоящем из серии испытаний, называется отношение числа испытаний, в которых появилось событие А , к общему числу испытаний.


Частоту события иногда называют статистической вероятностью в отличие от "математической", определенной ранее. Вычисляется частота события по следующей формуле:

где – число появлений события А в опыте, N – общее число произведенных испытаний.

При небольшом числе испытаний частота события носит в значительной степени случайный характер и может меняться от одной серии испытаний к другой. Например, рассмотрим опыт, который заключается в том, что монета бросается 10 раз. Интересующее нас событие А – появление герба. Повторяя опыт несколько раз, мы можем фиксировать частоту появления герба: 0,2; 0,4; 0,6; 0,8. Но с увеличением числа испытаний частота события теряет свой случайный характер, приближаясь к некоторой средней постоянной величине. В случае с симметричной монетой частота будет близка к 1/2.

Как отмечено выше, теория вероятностей исследует явления, которые характеризуются устойчивостью частот. В этом случае между частотой события и вероятностью существует органическая связь. В частности, для схемы случаев частота события при увеличении числа испытаний всегда приближается к его вероятности. И в общем случае справедливым является утверждение, что в серии испытаний частота события приближается к вероятности события с тем большей вероятностью, чем больше произведено испытаний. Для вероятностного приближения одних величин к другим используется специальный термин – "сходимость по вероятности". С учетом этого термина выше приведенное утверждение запишется

Данное утверждение составляет сущность теоремы Я. Бернулли и является следствием более общей закономерности, а именно закона больших чисел.

Теория вероятностей – это раздел математики, изучающий закономерности массовых однородных случайных явлений.

Основными исходными понятиями в теории вероятностей являются понятия испытания (опыта) и события . Всякое действие, результат которого фиксируется, называется испытанием (опытом), а результат испытания или испытаний называется событием. Будем говорить, что в результате испытания или испытаний происходит (наступает) событие.

Пример 1 . Подбросим над столом монету. При этом возможны два результата: монета упадёт на стол и на верхней её грани будет «герб» или же на верхней грани монеты будет «цифра». В этом случае будем говорить: выпал «герб» или выпала «цифра». В данном примере подбрасывание монеты является испытанием, а выпадение «герба» или выпадение «цифры» являются событиями, т.е. в результате подбрасывания монеты может произойти одно из двух рассмотренных событий.

Пример 2 . Подбросим монету два раза подряд. При этом возможны следующие события: {оба раза выпал «герб»}, {оба раза выпала «цифра»}, {первый раз выпал «герб», а второй раз – «цифра»}, {первый раз выпала «цифра», а второй раз – «герб»}.

Все рассматриваемые события можно подразделить на достоверные, невозможные и случайные .

Событие называется достоверным , если при данном испытании оно обязательно произойдёт. Событие называется невозможным , если при данном испытании оно не может произойти. Случайным называется событие, которое при данном испытании может произойти или не произойти.

Пример 3 . В урне находятся только красные шары. Проведём испытание – извлечём из урны один шар. Событие {извлечён красный шар} является достоверным, так как в урне только красные шары. Событие {извлечён белый шар} является невозможным, так как в урне нет белых шаров.

Пример 4 . Стрелок произвёл один выстрел по мишени. При этом может произойти одно из двух событий: {есть попадание в мишень} или {нет попадания в мишень}. Оба эти события случайные.

Случайные события принято обозначать заглавными буквами латинского алфавита A, B, C, …; достоверные события – буквой U и невозможные – буквой V .

Случайные события подразделяются на совместные, несовместные и единственно возможные .

События называются совместными , если при одном и том же испытании наступление одного из них не исключает наступление других, т.е. они могут произойти совместно.

События называются несовместными , если при одном и том же испытании наступление одного из них исключает наступление других, т.е. они не могут произойти совместно.

Пример 5 . По цели стреляют два стрелка. Обозначим события:

А = {первый стрелок попал в цель};

В = {второй стрелок попал в цель}.

События А и В будут совместными, так как попадание одного из стрелков в цель не исключает попадание другого.

Пример 6 . Подбрасывается монета. В результате могут произойти события:

А = {выпал «герб»};

В = {выпала «цифра»}.

События А и В несовместны, так как наступление одного из них исключает наступление другого.

События называются единственно возможными , если при данном испытании произойдёт хотя бы одно из них. Два единственно возможные и несовместные события называются противоположными . Если А – некоторое событие, то ему противоположное обозначается . Совокупность единственно возможных и несовместных событий образует полную группу событий .

Пример 7 . В урне находятся белые, чёрные и красные шары. Из урны извлекается один шар. Обозначим события:

А = {извлечён белый шар};

В = {извлечён чёрный шар};

С = {извлечён красный шар}.

События А, В, С являются единственно возможными.

Пример 8 . Стрелок выстрелил по цели. Обозначим события:

А = {есть попадание в цель};

= {нет попадания в цель}.

Эти события являются противоположными.

Пример 9 . Бросается игральный кубик, на гранях которого написаны цифры 1, 2, 3, 4, 5 и 6. Эти цифры обозначают число очков. При бросании кубика на верхней его грани выпадет одна из этих цифр. Обозначим события.