Легкие опыты по физике. Простые опыты

Большинство людей, вспоминая свои школьные годы, уверены, что физика - это весьма скучный предмет. Курс включает множество задач и формул, которые никому в последующей жизни не пригодятся. С одной стороны, эти утверждения правдивы, но, как и любой предмет, физика имеет и другую сторону медали. Только ее не каждый открывает для себя.

Очень многое зависит от учителя

Возможно, в этом виновата наша система образования, а может быть, все дело в учителе, который думает только о том, что нужно отчитать утвержденный свыше материал, и не стремится заинтересовать своих учеников. Чаще всего виноват именно он. Однако если детям повезет, и урок у них будет вести преподаватель, который сам любит свой предмет, то он сможет не только заинтересовать учеников, но и поможет им открыть для себя что-то новое. Что в результате приведет к тому, что дети начнут с удовольствием посещать такие занятия. Конечно, формулы являются неотъемлемой частью этого учебного предмета, от этого никуда не деться. Но есть и положительные моменты. Особый интерес у школьников вызывают опыты. Вот об этом мы и поговорим более детально. Мы рассмотрим некоторые занимательные опыты по физике, которые вы сможете провести вместе со своим ребенком. Это должно быть интересно не только ему, но и вам. Вполне вероятно, что при помощи таких занятий вы привьете своему чаду неподдельный интерес к учебе, а любимым предметом для него станет "скучная" физика. проводить совсем несложно, для этого потребуется совсем немного атрибутов, главное, чтобы было желание. И, возможно, тогда вы сможете заменить своему ребенку школьного учителя.

Рассмотрим некоторые интересные опыты по физике для маленьких, ведь начинать нужно с малого.

Бумажная рыбка

Чтобы провести данный эксперимент, нам необходимо вырезать из плотной бумаги (можно картона) маленькую рыбку, длина которой должна составить 30-50 мм. Делаем в середине круглое отверстие диаметром примерно 10-15 мм. Далее со стороны хвоста прорезаем узкий канал (ширина 3-4 мм) до круглого отверстия. После чего наливаем воду в таз и аккуратно помещаем туда нашу рыбку таким образом, чтобы одна плоскость лежала на воде, а вторая - оставалась сухой. Теперь необходимо в круглое отверстие капнуть масла (можно воспользоваться масленкой от швейной машинки или велосипеда). Масло, стремясь разлиться по поверхности воды, потечет по прорезанному каналу, а рыбка под действием вытекающего назад масла поплывет вперед.

Слон и Моська

Продолжим проводить занимательные опыты по физике со своим ребенком. Предлагаем вам познакомить малыша с понятием рычага и с тем, как он помогает облегчать работу человека. Например, расскажите, что при помощи него легко можно приподнять тяжелый шкаф или диван. А для наглядности показать элементарный опыт по физике с применением рычага. Для этого нам понадобятся линейка, карандаш и пара маленьких игрушек, но обязательно разного веса (вот почему мы и назвали этот опыт «Слон и Моська»). Крепим нашего Слона и Моську на разные концы линейки при помощи пластилина, или обычной нитки (просто привязываем игрушки). Теперь, если положить линейку средней частью на карандаш, то перетянет, конечно же, слон, ведь он тяжелее. А вот если сместить карандаш в сторону слона, то Моська запросто перевесит его. Вот в этом и заключается принцип рычага. Линейка (рычаг) опирается на карандаш - это место является точкой опоры. Далее ребенку следует рассказать, что этот принцип используется повсеместно, он заложен в основу работы крана, качелей и даже ножниц.

Домашний опыт по физике с инерцией

Нам понадобятся банка с водой и хозяйственная сетка. Ни для кого не будет секретом, что если открытую банку перевернуть, то вода выльется из нее. Давайте попробуем? Конечно, для этого лучше выйти на улицу. Ставим банку в сетку и начинаем плавно раскачивать ее, постепенно наращивая амплитуду, и в результате делаем полный оборот - один, второй, третий и так далее. Вода не выливается. Интересно? А теперь заставим воду выливаться вверх. Для этого возьмем жестяную банку и сделаем в донышке отверстие. Ставим в сетку, наполняем водой и начинаем вращать. Из отверстия бьет струя. Когда банка в нижнем положении, это не удивляет никого, а вот когда она взлетает вверх, то и фонтан продолжает бить в том же направлении, а из горловины - ни капли. Вот так-то. Все это может объяснить принцип инерции. При вращении банка стремится улететь прямо, а сетка не пускает ее и заставляет описывать окружности. Вода также стремится лететь по инерции, а в том случае, когда мы в донышке сделали отверстие, ей уже ничего не мешает вырваться и двигаться прямолинейно.

Коробок с сюрпризом

Теперь рассмотрим опыты по физике со смещением Нужно положить спичечный коробок на край стола и медленно двигать его. В тот момент, когда он пройдет свою среднюю отметку, произойдет падение. То есть масса выдвинутой за край столешницы части превысит вес оставшейся, и коробок опрокинется. Теперь сместим центр массы, например, положим внутрь (как можно ближе к краю) металлическую гайку. Осталось поместить коробок таким образом, чтобы малая ее часть оставалась на столе, а большая висела в воздухе. Падения не произойдет. Суть этого эксперимента заключатся в том, что вся масса находится выше точки опоры. Этот принцип также используется повсюду. Именно благодаря ему в устойчивом положении находятся мебель, памятники, транспорт, и многое другое. Кстати, детская игрушка Ванька-встанька тоже построена на принципе смещения центра массы.

Итак, продолжим рассматривать интересные опыты по физике, но перейдем к следующему этапу - для школьников шестых классов.

Водяная карусель

Нам потребуются пустая консервная банка, молоток, гвоздь, веревка. Пробиваем при помощи гвоздя и молотка в боковой стенке у самого дна отверстие. Далее, не вытягивая гвоздь из дырки, отгибаем его в сторону. Необходимо, чтобы отверстие получилось косое. Повторяем процедуру со второй стороны банки - сделать нужно так, чтобы дырки получились друг напротив друга, однако гвозди были загнуты в разные стороны. В верхней части сосуда пробиваем еще два отверстия, в них продеваем концы каната или толстой нити. Подвешиваем емкость и наполняем ее водой. Из нижних отверстий начнут бить два косых фонтана, а банка начнет вращаться в противоположную сторону. На этом принципе работаю космические ракеты - пламя из сопел двигателя бьет в одну сторону, а ракета летит в другую.

Опыты по физике - 7 класс

Проведем эксперимент с плотностью масс и узнаем, как можно заставить яйцо плавать. Опыты по физике с различными плотностями лучше всего проводить на примере пресной и соленой воды. Возьмем банку, заполненную горячей водой. Опустим в нее яйцо, и оно сразу утонет. Далее насыпаем в воду поваренную соль и размешиваем. Яйцо начинает всплывать, причем, чем больше соли, тем выше оно поднимется. Это объясняется тем, что соленая вода имеет более высокую плотность, чем пресная. Так, всем известно, что в Мертвом море (его вода самая соленая) практически невозможно утонуть. Как видите, опыты по физике могут существенно увеличить кругозор вашего ребенка.

и пластиковая бутылка

Школьники седьмых классов начинают изучать атмосферное давление и его воздействие на окружающие нас предметы. Чтобы раскрыть эту тему глубже, лучше провести соответствующие опыты по физике. Атмосферное давление оказывает влияние на нас, хоть и остается невидимым. Приведем пример с воздушным шаром. Каждый из нас может его надуть. Затем мы поместим его в пластиковую бутылку, края оденем на горлышко и зафиксируем. Таким образом, воздух сможет поступать только в шар, а бутылка станет герметичным сосудом. Теперь попробуем надуть шар. У нас ничего не получится, так как атмосферное давление в бутылке не позволит нам этого сделать. Когда мы дуем, шар начинает вытеснять воздух в сосуде. А так как бутылка у нас герметична, то ему деваться некуда, и он начинает сжиматься, тем самым становится гораздо плотнее воздуха в шаре. Соответственно, система выравнивается, и шар надуть невозможно. Теперь сделаем отверстие в донышке и пробуем надуть шар. В таком случае никакого сопротивления нет, вытесняемый воздух покидает бутылку - атмосферное давление выравнивается.

Заключение

Как видите, опыты по физике совсем не сложные и довольно интересные. Попробуйте заинтересовать своего ребенка - и учеба для него будет проходить совсем по-другому, он начнет с удовольствием посещать занятия, что в конце концов скажется и на его успеваемости.

Многие думают, что наука - это скучно и тоскливо. Так считает тот, кто не видел научные шоу от «Эврики». Что происходит у нас на «уроках»? Никакой зубрежки, нудных формул и кислого выражения лица соседа по парте. Наша наука, все опыты и эксперименты нравится детям, нашу науку любят, наша наука дарит радость и стимулирует дальнейшее познание сложных предметов.

Попробуйте и вы, провести дома занимательные опыты по физике для детей. Это будет весело, а главное, очень познавательно. Ваш ребенок в игровой форме познакомится с законами физики, а ведь доказано: в игре дети быстрее и легче усваивают материал и запоминают надолго.

Занимательные опыты по физике, которые стоит показать детям дома

Простые занимательные опыты по физике, которые дети запомнят на всю жизнь. Все что необходимо для проведения этих опытов - у вас под рукой. Итак, вперед к научным открытиям!

Шарик, который не горит!

Реквизит: 2 воздушных шарика, свеча, спички, вода.

Интересный опыт: Первый шарик надуваем и держит над свечкой, чтобы продемонстрировать детворе, что шарик от огня лопнет.

Во второй шарик наливаем простой воды из-под крана, завязываем и снова подносим к огню свечи. И о чудо! Что мы видим? Шарик не лопается!

Вода, которая находится в шарике, поглощает тепло, выделяемое свечой, а потому шарик не горит, следовательно, не лопается.

Чудо-карандаши

Реквизиты: полиэтиленовый пакет, обычные заточенные карандаши, вода.

Интересный опыт: В полиэтиленовый пакет наливаем воду - не полный, наполовину.

В том месте, где пакет заполнен водой, протыкаем пакет насквозь карандашами. Что видим? В местах прокола - пакет не протекает. Почему? А, если сделать наоборот: сначала проткнуть пакет, а затем налить в него воду, вода будет протекать через отверстия.

Как происходит «чудо»: объяснение: При разрыве полиэтилена его молекулы притягиваются ближе друг к другу. В нашем эксперименте, полиэтилен затягивается вокруг карандашей и не дает протекать воде.

Нелопающийся шарик

Реквизиты: воздушный шарик, деревянная шпажка и жидкость для мытья посуды.

Интересный опыт: Смазываем жидкостью для мытья посуды верх и низ шарика, протыкаем шпажкой, начиная снизу.

Как происходит «чудо»: объяснение: А секрет этого «фокуса» - прост. Для сохранения целого шарика, нужно знать, где протыкать - в точках наименьшего натяжения, которые и располагаются в нижней и в верхней части шарика.

«Цветная» капуста

Реквизиты: 4 обыкновенных стакана с водой, яркие пищевые красители, капустные листья или цветы белого цвета.

Интересный опыт: В каждый стакан добавляем пищевой краситель любого цвета и ставим в цветную воду по одному листку капусты или цветок. Оставляем «букет» на ночь. А утром… мы увидим, что листья капусты или цветы стали разных цветов.

Как происходит «чудо»: объяснение: Растения всасывают воду, питая свои цветы и листья. Это происходит благодаря капиллярному эффекту, при котором вода сама заполняет тоненькие трубочки внутри растений. Всасывая подкрашенную воду, листья и цвет меняют свой цвет.

Яйцо, которое умело плавать

Реквизиты: 2 яйца, 2 стакана с водой, соль.

Интересный опыт: Аккуратно кладем яйцо в стакан с обычной чистой водой. Мы видим: оно утонуло, опустилось на дно (если нет - яйцо тухлое и лучше его выбросить).
А вот во второй стакан наливаем теплую воду и размешиваем в ней 4-5 столовых ложек соли. Ждем пока вода остынет, затем опускаем в соленую воду второе яйцо. И что мы видим теперь? Яйцо плавает на поверхности и не тонет! Почему?

Как происходит «чудо»: объяснение: А дело все в плотности! Средняя плотность яйца гораздо больше, чем плотность простой воды, поэтому яйцо «тонет». А плотность соляного раствора больше, а потому яйцо «плавает».

Вкусный эксперимент: кристаллические леденцы

Реквизиты: 2 стакана воды, 5 стаканов сахара, деревянные палочки для мини-шашлычков, плотная бумага, прозрачные стаканы, кастрюля, пищевые красители.

Интересный опыт: Берем четверть стакана воды, добавляем 2 столовые ложки сахара, варим сироп. Одновременно высыпаем немного сахара на плотную бумагу. Затем деревянную шпажку обмакиваем в сироп и собираем ею сахаринки.

Оставляем палочки сушиться на ночь.

Утром растворяем в двух стаканах воды 5 стаканов сахара, оставляем сироп остывать минут на 15, но не сильно, иначе кристаллы не будут «расти». Затем разливаем сироп по банкам и добавляем разноцветные пищевые красители. Шпажки с сахаром опускаем в банки, чтобы они не касались ни стенок, ни дна (можно воспользоваться бельевой прищепкой). Что дальше? А дальше наблюдаем за процессом роста кристаллов, ждем результат, чтобы …съесть!

Как происходит «чудо»: объяснение: Как только вода начинает остывать, растворимость сахара снижается и он выпадает в осадок, оседая на стенках сосуда и на шпажке с затравкой из сахарных крупинок.

«Эврика»! Наука без скуки!

Есть еще один вариант мотивировать детей для изучения науки - заказать научное шоу в центре развития «Эврика». О, чего здесь только нет!

Шоу-программа «Веселая кухня»

Здесь детишек ждут увлекательные эксперименты с теми вещами и продуктами, которые имеются на любой кухне. Детишки попробуют утопить мандаринку; сделать рисунки на молоке, проверят яйцо на свежесть, а также узнают, почему полезно молоко.

«Фокусы»

В этой программе собраны эксперименты, которые на первый взгляд кажутся настоящими волшебными фокусами, но на самом деле все они объясняются при помощи науки. Детвора узнает: почему не лопается воздушный шарик над свечой; что заставляет яйцо плавать, почему воздушный шарик прилипает к стенке…и другие интересные опыты.

«Занимательная физика»

Весит ли воздух, почему греет ли шуба, что общего между экспериментом со свечой и формой крыла у птиц и самолетов, сможет ли кусок ткани держать воду, выдержит ли а яичная скорлупа целого слона на эти и другие вопросы детишки получат ответ, став участником шоу «Занимательная физика» от «Эврики».

Эти Занимательные опыты по физике для школьников можно провести на уроках, чтобы привлечь внимание учащихся к изучаемому явлению, при повторении и закреплении учебного материала: они углубляют и расширяют знания школьников, способствуют развитию логического мышления, прививают интерес к предмету.

Это важно: безопасность научного шоу

  • Основная часть реквизита и расходных материалов закупается напрямую в специализированных магазинах фирм-производителей в США, а потому вы можете быть уверенны в их качестве и безопасности;
  • Центр детского развития «Эврика» не научных шоу токсичных или других вредных для здоровья детей материалов, легко бьющихся предметов, зажигалок и прочего «вредного и опасного»;
  • Перед заказом научных шоу каждый клиент может узнать подробное описание проводимых экспериментов, а в случае необходимости толковые разъяснения;
  • Перед началом научных шоу детвора получает инструктаж о правилах поведения на Шоу, а профессиональные Ведущие следят, чтобы эти правила при проведении шоу не нарушались.

Откуда берутся настоящие ученые? Ведь кто-то совершает необыкновенные открытия, изобретает хитроумные приборы, которыми мы пользуемся. Некоторые даже получают мировое признание в виде престижных наград. Как утверждают педагоги, детство - начало пути к будущим открытиям и свершениям.

Нужна ли физика младшим школьникам

Большинство школьных программ предполагает изучение физики с пятого класса. Однако родители хорошо знают, какое множество вопросов возникает у любознательных ребят младшего школьного возраста и даже у дошколят. Открыть дорогу к чудесному миру знаний помогут опыты по физике. Для школьников 7-10 лет они, конечно, будут несложными. Несмотря на простоту опытов, но поняв основные физические принципы и законы, дети ощущают себя всемогущими волшебниками. Это прекрасно, ведь живой интерес к науке - залог успешной учебы.

Детские способности не всегда раскрываются самостоятельно. Часто требуется предложить детворе определенную научную деятельность, лишь потом проявляются склонности к тем или иным знаниям. Домашние опыты - легкий способ выяснить, интересуется ли чадо естественными науками. Маленькие открыватели мира редко остаются равнодушными к «чудесным» действиям. Даже если желание изучать физику ярко не проявится, заложить азы физических знаний все же стоит.

Простейшие опыты, проводимые дома, хороши тем, что даже стеснительные, сомневающиеся в себе дети с удовольствием занимаются домашними экспериментами. Достижение ожидаемого результата рождает уверенность в собственных силах. Ровесники восторженно принимают демонстрацию подобных «фокусов», что улучшает отношения между ребятами.

Требования к постановке опытов дома

Чтобы изучение законов физики в домашних условиях было безопасным, необходимо соблюдать меры предосторожности:

  1. Абсолютно все эксперименты проводятся с участием взрослых. Конечно, многие исследования безопасны. Беда в том, что ребята не всегда проводят четкую границу между безобидными и опасными манипуляциями.
  2. Необходимо быть особенно внимательными, если используются острые, колюще-режущие предметы, открытый огонь. Здесь присутствие старших обязательно.
  3. Использование ядовитых веществ запрещено.
  4. Ребенку нужно подробно описать порядок действий, которые следует произвести. Необходимо ясно сформулировать цель работы.
  5. Взрослые должны объяснять суть опытов, принципы действия законов физики.

Простейшие исследования

Начать знакомство с физикой можно, демонстрируя свойства веществ. Это должны быть самые простые опыты для детей.

Важно! Желательно предусмотреть возможные детские вопросы, чтобы ответить на них максимально подробно. Неприятно, когда мама или папа предлагают провести опыт, смутно понимая, что он подтверждает. Поэтому лучше подготовиться, проштудировав нужную литературу.

Разная плотность

Каждое вещество обладает плотностью, влияющей на его вес. Разные показатели этого параметра имеют интересные проявления в виде многослойной жидкости.

Даже дошкольники могут проводить такие простейшие опыты с жидкостями и наблюдать за их свойствами.
Для эксперимента понадобятся:

Банку нужно заполнить примерно на 1/3 сиропом, добавить такое же количество воды и масла. Жидкости не будут смешиваться, а образуют слои. Причина - плотность, вещество с меньшей плотностью легче. Затем поочередно в банку нужно опустить предметы. Они «зависнут» на разных уровнях. Все зависит от того, как соотносятся между собой плотности жидкостей и предметов. Если плотность материала меньше, чем жидкости, вещица не утонет.

Плавающее яйцо

Понадобятся:

  • 2 стакана;
  • столовая ложка;
  • соль;
  • вода;
  • 2 яйца.

Оба стакана нужно наполнить водой. В одном из них растворить 2 полные столовые ложки соли. Затем в стаканы следует опустить яйца. В обычной воде оно утонет, в соленой станет держаться на поверхности. Соль повышает плотность воды. Именно этим объясняется тот факт, что в морской воде плавать легче, чем в пресной.

Поверхностное натяжение воды

Детям следует объяснить, что молекулы на поверхности жидкости притягиваются, образуя тончайшую упругую пленку. Такое свойство воды называется поверхностным натяжением. Этим объясняется, например, способность водомерки скользить по водной глади пруда.

Непроливающаяся вода

Необходимо:

  • стеклянный стакан;
  • вода;
  • канцелярские скрепки.

Стакан до краев наполняется водой. Кажется, одной скрепки достаточно, чтобы жидкость пролилась. Необходимо осторожно погружать скрепки в стакан одну за другой. Опустив около десятка скрепок, можно увидеть, что вода не выливается, а образует на поверхности небольшой купол.

Плавающие спички

Необходимо:

  • миска;
  • вода;
  • 4 спички;
  • жидкое мыло.

В миску следует налить воду, опустить спички. Они будут практически неподвижны на поверхности. Если капнуть в центр моющее средство, спички мгновенно расплывутся к краям миски. Мыло уменьшает поверхностное натяжение воды.

Занимательные опыты

Очень зрелищной бывает для детей работа со светом и звуком. Педагоги утверждают, что занимательные опыты интересны ребятам разных возрастов. Например, предложенные здесь физические опыты подойдут и для дошкольников.

Светящаяся «лава»

Этот опыт не создает настоящий светильник, но красиво имитирует работу лампы с движущимися частицами.
Необходимо:

  • стеклянная банка;
  • вода;
  • растительное масло;
  • соль или любая шипучая таблетка;
  • пищевой краситель;
  • фонарик.

Банку нужно примерно на 2/3 наполнить окрашенной водой, затем почти до краев долить масла. Сверху следует посыпать немного соли. Затем отправиться в затемненную комнату, подсветить банку снизу фонариком. Крупинки соли станут опускаться на дно, увлекая за собой капельки жира. Позже, когда соль растворится, масло снова поднимется к поверхности.

Домашняя радуга

Солнечный свет можно разложить на составляющие спектр разноцветные лучи.

Необходимо:

  • яркий естественный свет;
  • стакан;
  • вода;
  • высокая коробка или стул;
  • большой лист белой бумаги.

В солнечный день перед окном, впускающим яркий свет, на пол нужно положить бумагу. Рядом установить коробку (стул), сверху поставить наполненный водой стакан. На полу появится радуга. Чтобы увидеть цвета полностью, достаточно подвигать бумагу и поймать ее. Прозрачная емкость с водой является призмой, раскладывающей луч на части спектра.

Стетоскоп доктора

Звук распространяется с помощью волн. Звуковые волны в пространстве можно перенаправлять, усиливать.
Понадобятся:

  • отрезок резиновой трубки (шланга);
  • 2 воронки;
  • пластилин.

В оба конца резиновой трубки нужно вставить воронку, закрепив ее пластилином. Теперь одну достаточно приставить к своему сердцу, а к другую - к уху. Ясно слышно биение сердца. Воронка «собирает» волны, внутренняя поверхность трубки не позволяет им рассеиваться в пространстве.

По этому принципу работает стетоскоп доктора. В старину примерно такое же устройство имели слуховые аппараты для слабослышащих людей.

Важно! Нельзя использовать источники громкого звука, так как это может повредить слуху.

Эксперименты

В чем разница между экспериментом и опытом? Это методы исследования. Обычно опыт проводится с заранее известным результатом, демонстрируя уже понятную аксиому. Эксперимент же призван подтвердить или опровергнуть гипотезу.

Для детей разница между этими понятиями практически неощутима, любое действие производится впервые, без научной базы.

Однако часто проснувшийся интерес толкает ребят на новые эксперименты, вытекающие из уже известных свойств материалов. Такую самостоятельность нужно поощрять.

Замораживание жидкостей

Материя меняет свойства с переменой температуры. Детей интересует изменение свойств всяческих жидкостей при обращении в лед. Различные вещества имеют отличную друг от друга температуру замерзания. Также при низкой температуре меняется их плотность.

Обратите внимание! Замораживая жидкости, следует применять только пластиковые контейнеры. Использовать стеклянные емкости нежелательно, так как они могут лопнуть. Причина в том, что жидкости, замерзая, меняют свою структуру. Молекулы образуют кристаллы, расстояние между ними увеличивается, увеличивается объем вещества.

  • Если наполнить разные формочки водой и апельсиновым соком, оставить в морозильной камере, что получится? Вода уже замерзнет, а сок частично останется жидким. Причина - температура замерзания жидкости. Подобные эксперименты можно проводить с разными веществами.
  • Налив в прозрачный контейнер воду и масло, можно увидеть уже привычное расслоение. Масло всплывает на поверхность воды, так как обладает меньшей плотностью. Что можно наблюдать при замораживании контейнера с содержимым? Вода и масло меняются местами. Сверху будет находиться лед, масло теперь окажется внизу. Замерзая, вода стала легче.

Работа с магнитом

Большой интерес у младших школьников вызывает проявление магнитных свойств различных веществ. Занимательная физика предлагает проверить эти свойства.

Варианты экспериментов (понадобятся магниты):

Проверка способности притягиваться различных предметов

Можно вести записи, указывая свойства материалов (пластик, дерево, железо, медь). Интересный материал - железная стружка, движение которой выглядит завораживающе.

Изучение способности магнита действовать сквозь другие материалы.

Например, металлический предмет подвергается воздействию магнита через стекло, картон, деревянную поверхность.

Рассмотрение способности магнитов притягиваться и отталкиваться.

Изучение магнитных полюсов (одноименные отталкиваются, разноименные притягиваются). Зрелищный вариант - прикрепление магнитов к плавающим игрушечным корабликам.

Намагниченная иголка - аналог компаса

В воде она указывает направление «север - юг». Намагниченная иголка притягивает другие мелкие предметы.

  1. Желательно не перегружать маленького исследователя информацией. Цель опытов - показать работу законов физики. Лучше подробно рассмотреть одно явление, чем ради зрелищности бесконечно менять направления.
  2. Перед каждым опытом доступно объяснить свойства и особенности предметов, участвующих в них. Затем вместе с ребенком подвести итог.
  3. Особенного внимания заслуживают правила безопасности. Начало каждого занятия сопровождается инструкциями.

Научные опыты - увлекательное дело! Возможно, оно окажется таковым и для родителей. Вместе открывать новые стороны обычных явлений интересно вдвойне. Стоит отбросить повседневные заботы, разделив детскую радость открытий.

Сотни тысяч физических опытов было поставлено за тысячелетнюю историю науки. Сложно отобрать несколько «самых-самых».Среди физиков США и Западной Европы был проведен опрос. Исследователи Роберт Криз и Стони Бук просили их назвать наиболее красивые за всю историю физические эксперименты. Об опытах, вошедших в первую десятку по итогам выборочного опроса Криза и Бука, рассказал научный работник Лаборатории нейтринной астрофизики высоких энергий, кандидат физико-математических наук Игорь Сокальский.

1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами, сообщает сайт «Химия и жизнь».

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем, - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ (mM/r2), оставалось определить значение гравитационной постоянной γ - Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных

количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной.

Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин «электрон», обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х 10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в «рыхлом» атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. А третьи вообще скоро будут проводить на других планетах.

Налейте воду в стакан, обязательно до самого края. Накройте листом плотной бумаги и аккуратно придерживая его, очень быстро переверните стакан кверху дном. На всякий случай, проделывайте все это над тазом или в ванной. Теперь уберите ладонь… Фокус! по-прежнему остается в стакане!

Дело в давлении атмосферного воздуха. Давление воздуха на бумагу снаружи больше давления на нее изнутри стакана и, соответственно, не позволяет бумаге выпустить воду из емкости.

Опыт Рене Декарта или пипетка-водолаз

Этому занимательному опыту около трехсот лет. Его приписывают французскому ученому Рене Декарту.

Вам понадобится пластиковая бутылка с пробкой, пипетка и вода. Наполните бутылку , оставив два-три миллиметра до края горлышка. Возьмите пипетку, наберите в нее немного воды и опустите в горлышко бутылки. Она должна своим верхним резиновым концом быть на уровне или чуть выше уровня в бутылке. При этом нужно добиться, чтобы от легкого толчка пальцем пипетка погружалась, а потом сама медленно всплывала. Теперь закройте пробку и сдавите бока бутылки. Пипетка пойдет на дно бутылки. Ослабьте давление на бутылку, и она снова всплывет.

Дело в том, что мы немного сжали воздух в горлышке бутылки и это давление передалось воде. проникла в пипетку — она стала тяжелее (так как вода тяжелее воздуха) и утонула. При прекращении давления сжатый воздух внутри пипетки удалил лишнюю , наш «водолаз» стал легче и всплыл. Если в начале опыта «водолаз» вас не слушается, значит, надо отрегулировать количество воды в пипетке. Когда пипетка находится на дне бутылки, легко проследить, как от усиления нажима на стенки бутылки входит в пипетку, а при ослаблении нажима выходит из нее.